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Slow Steady Viscous Flow of
Newtonian Fluids in Parallel-Disk
Viscometer With Wall Slip
The parallel-disk viscometer is a widely used instrument for measuring the rheological
properties of Newtonian and non-Newtonian fluids. The torque-rotational speed data
from the viscometer are converted into viscosity and other rheological properties of the
fluid under test. The classical no-slip boundary condition is usually assumed at the
disk-fluid interface. This leads to a simple azimuthal flow in the disk gap with the azi-
muthal velocity linearly varying in the radial and normal directions of the disk surfaces.
For some complex fluids, the no-slip boundary condition may not be valid. The present
investigation considers the flow field when the fluid under test exhibits wall slip. The
equation for slow steady azimuthal flow of Newtonian fluids in parallel-disk viscometer in
the presence of wall slip is solved by the method of separation of variables. Both linear
and nonlinear slip functions are considered. The solution takes the form of a Bessel
series. It shows that, in general, as a result of wall slip the azimuthal velocity no longer
linearly varies in the radial direction. However, under conditions pertinent to parallel-
disk viscometry, it approximately remains linear in the normal direction. The implications
of these observations on the processing of parallel-disk viscometry data are discussed.
They indicate that the method of Yoshimura and Prud’homme (1988, “Wall Slip Correc-
tions for Couette and Parallel-Disk Viscometers,” J. Rheol., 32(1), pp. 53–67) for the
determination of the wall slip function remains valid but the simple and popular proce-
dure for converting the measured torque into rim shear stress is likely to incur significant
error as a result of the nonlinearity in the radial direction. �DOI: 10.1115/1.2910901�

Keywords: parallel-disk viscometer, wall slip, slow viscous flow, Navier slip law, Bessel
series

1 Introduction
The parallel-disk viscometer is employed by rheologists to

measure the shear properties of a wide range of fluids. In a typical
steady-shear measurement, the gap between the two parallel disks
is filled with the fluid under test. The upper disk is rotated at a
steady angular speed � while the lower disk is held stationary.
The torque � is recorded for a series of rotational speeds. These
�-� data are then converted into material properties of the fluid.
The no-slip boundary condition is assumed at the disk-fluid
boundaries. Under the normal conditions of parallel-disk viscom-
etry, the inertia terms in the equation of motion are small and can
be ignored. It is also observed that the stress-free fluid surface at
the rim of the disks essentially remains flat in the vertical direc-
tion. As a consequence, the flow field inside the gap is approxi-
mately unidirectional and the cylindrical polar velocity compo-
nents in the r and z directions can be ignored. The azimuthal
component v� also takes on a particularly simple form. The v� that
satisfies the equation of motion and the no-slip boundary condi-
tion is

v��r,z� = �1

2
+

z

h
��r, 0 � r � R and − h/2 � z � h/2 �1�

where R is the disk radius and h ��R� is the disk gap. In Eq. �1�,
z=0 is the midplane between the disks. This v��r ,z� is linear in r
and z. At the midplane, it is exactly half the speed of the upper
disk. v��r ,z� is antisymmetric about the midplane velocity. Equa-

tion �1� is assumed by many of the commercial software that
accompany the current generation of parallel-disk viscometers for
converting the measured �-� data into rheological properties.
When the shear stress at the disk surfaces is sufficiently high,
some fluids may no longer adhere to the disk and begin to exhibit
wall slip. When this happens, the rheological properties derived
from the �-� data becomes gap dependent and are no longer
genuine properties of the fluid under test. This gap dependence is,
in fact, used as an indicator of wall slip �1�. In fluids with sus-
pended particles or droplets, shear-induced segregation may result
in the formation of a thin layer of low viscosity fluid next to the
disk surfaces. This low viscosity layer then acts as a lubricating
film resulting in high velocity gradient next to the disk surfaces.
While there is no genuine breakdown of the no-slip boundary
condition, this shear-induced inhomogeneity will again result in
gap-dependent rheological properties. This is often referred to as
apparent wall slip. In either real or apparent slip, an additional
material property function, the slip function S�vslip� is often intro-
duced to relate the slip velocity vslip to the wall shear stress �w
=S�vslip�. The slip velocity is defined by vslip�vdisk−vfluid at the
disk surface. Yoshimura and Prud’homme �1� have developed a
procedure in which two sets of �-� data for two different gaps are
used to obtain S�vslip�. This procedure is now routinely used to
obtain this additional material property function �2–4�.

When wall slip is present, it is not immediately clear that the
simple kinematics represented by Eq. �1� is still valid within the
disk gap. There have been a number of investigations into this
issue—both for genuine and for apparent slip �5,6�. The general
consensus is that while the analysis of Yoshimura and
Prud’homme �1� is not exact, it is an acceptable approximation—
particularly when the h :R ratio is small. In this investigation, a
series solution for v��r ,z� is obtained for Newtonian fluids that
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exhibit wall slip. The solution is applicable to linear and nonlinear
S�vslip�. This series solution is used to investigate the nature of the
flow field within the disk gap and to verify some of the assump-
tions inherent in the procedure of Yoshimura and Prud’homme
�1�.

2 Equation of Motion
For a Newtonian fluid under the normal conditions of parallel-

disk viscometery, the azimuthal equation of motion reduces to �7�

�2v�

�r2 +
1

r

�v�

�r
−

v�

r2 +
�2v�

�z2 = 0 �2�

The inertia term has been ignored and the flow is assumed to be
axisymmetric so that the azimuthal velocity is a function of r and
z only, i.e., v��r ,z�. It is further assumed that wall slip occurs to
the same extent at the upper and lower disks and consequently
v��r ,z� remains antisymmetric about the midplane. This more
general form of v��r ,z� replaces that given by Eq. �1�.

At the disk surfaces, the no-slip boundary condition is replaced
by

�w�r,h/2� = �w�r,− h/2� = S��r − v��r,h/2�� = S�v��r,− h/2��
�3�

These expressions equate the viscous shear stress �w generated by
the steady shear of the fluid next to the disk surfaces with that
generated by slippage. In addition to Eq. �3�, v��r ,z� also has to
satisfy the stress-free condition at the rim of the disk, i.e., �r�=0.
In terms of v��r ,z�, this takes the form �7�

��v�/r�
�r

= 0 at r = R �4�

The method of separation of variables will be used to construct a
solution for Eq. �2� subject to Eqs. �3� and �4�.

3 Separable Solution
To cope with wall slip, instead of Eq. �1�, v��r ,z� will be as-

sumed to be of the form

v��r,z� =
�r

2
+ �0rz + V�r,z� =

�r

2
+ �0rz + F�r�G�z� �5�

where �0 is a constant and V�r ,z� is a function to be determined.
The first two terms in this representation of v��r ,z� automatically
satisfy Eq. �2�. Equation �5� reduces to Eq. �1�, i.e., �0→� /h and
V�r ,z�→0, when the no-slip boundary condition applies. In the
solution scheme to be developed, it is further assumed that the r
and z in V�r ,z� are separable so that V�r ,z�=F�r�G�z�. Substitut-
ing Eq. �5� into Eq. �2� leads to

1

F�r��d2F�r�
dr2 +

1

r

dF�r�
dr

−
F�r�
r2 	 = −

1

G�z�
d2G�z�

dz2 = − �2 �6�

or

d2F�r�
dr2 +

1

r

dF�r�
dr

+ 
�2 −
1

r2�F�r� = 0 �7a�

d2G�z�
dz2 = �2G�z� �7b�

where −�2 is the separation constant and � is taken to be real and
positive. Equation �7a� is a first order Bessel equation and its
solution is J1��r�—Bessel function of the first kind of order 1.
The other linearly independent solution is the corresponding
Bessel function of the second kind Y1��r�. Since Y1��r� is singu-
lar at r=0, it is discarded. The solution to Eq. �7b� is sinh��r�. The
second solution is cosh��r�. This second solution also has to be
discarded as it is symmetric about the midplane while physical

considerations require v��r ,z� to be antisymmetric.
The admissible values of � are determined by Eq. �4�. In terms

of J1��r�, this takes the form

d�J1��r�/r�
dr

= 0 at r = R �8a�

From the relationships between Bessel functions of different or-
ders, this boundary condition reduces to �8�

J2��R� = 0 �8b�
This equation has infinitely many solutions. The first ten of these
are �R= �5.13562,8.41724,11.6198,14.796,17.9598,21.117,
24.2701,27.4206,30.5692,33.7165
. These were obtained by nu-
merically solving Eq. �8b�. The �0rz term in Eq. �5� can be re-
garded as the solution associated with �R=0. This term together
with the J1��ir� terms forms an orthogonal basis that can be used
to construct a generalized Fourier series to represent most well
behaved functions �8�. The series solution for v��r ,z� can thus be
written as

v��r,z� = �r/2 + �0rz + �
i=1

	

�iJ1��ir�sinh��iz� �9�

where �0 ,�1 ,�2 ,�3 , . . . are the coefficients yet to be determined.

4 Matching Slip Boundary Condition
In terms of Eq. �9�, the slip velocity at the upper disk is

vslip�r,h/2� = �r − ��r/2 + �0rh/2 + �
i=1

	

�iJ1��ir�sinh��h/2�	
�10�

From Eq. �3�, �w at the upper disk is

�w = S��r/2 − �0rh/2 − �
i=1

	

�iJ1��ir�sinh��ih/2�� �11�

Because of the anti-symmetric nature of Eq. �9�, Eq. �11� also
applies at the lower disk. At the upper disk, for a Newtonian fluid
with viscosity 
, �w is also given by

�w = 
� �v��r,z�
�z

�
h/2

= 
�0r + 
�
i=1

	

�i�iJ1��ir�cosh ��ih/2�

�12�
Again this expression also applies at the lower disk. Equating the
two expressions for �w gives


�0r + 
�
i=1

	

�i�iJ1��ir�cosh ��ih/2�

= S��r/2 − �0rh/2 − �
i=1

	

�iJ1��ir�sinh��ih/2�� �13�

The coefficients �0 ,�1 ,�2 ,�3 , . . . are determined so that this con-
dition is met for 0�r�R or approximately satisfied at a large
number of collocation points for r in this range. The values of
�0 ,�1 ,�2 ,�3. . . and the way they are obtained depend on the form
of S�vslip�, as will be demonstrated in the next section.

5 Results

5.1 Linear Slip Law. In the boundary condition proposed by
Navier in 1823, the wall shear stress is assumed to be a linear
function of the slip velocity, i.e., �w=k1vslip �9�. Substituting this
into Eq. �13� leads to
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�0r + 
�
i=1

	

�i�iJ1��ir�cosh ��ih/2�

= k1��r/2 − �0rh/2 − �
i=1

	

�iJ1��ir�sinh��ih/2�	, 0 � r � R

�14�

Linearity of the slip function means that all the coefficients of the
Bessel series are identically zero and the unknown �0 is given by

R�0

�
= 1�� 2


k1R
+

h

R
� �15�

Equation �15� gives the dimensionless parameter R�0 /� in terms
of the dimensionless group 
 /k1R and the gap ratio h /R. 
 /k1R is
a measure of the relative importance of the viscous shear stress
and the slippage shear stress. h /R is the key geometric parameter
of the viscometer. The resulting v��r ,z� is

v��r,z�
�R

=
1

2
� r

R
� + � r

R
�� z

R
��� 2


k1R
+

h

R
� �16�

Equation �16� clearly shows that, in the presence of linear slip, the
velocity remains linear in r and in z. When k1�
 /h, correspond-
ing to negligible wall slip, Eq. �16� reduces to Eq. �1�.

Based on Eq. �16�, the wall shear stress is given by

�w


�
= � r

R
��� 2


k1R
+

h

R
	 �17�

Thus, for a Newtonian fluid that follows the linear slip law, the
wall shear stress remains a linear function of r as is observed
when the no-slip boundary condition applies. The shear stress
within the disk gap is independent of z—a condition observed for
all fluids when the no-slip boundary condition applies �1�.

Typical v��r ,z� profiles for the linear slip law are shown in Fig.
1. These results are for k1R /
=5 and h /R=0.15. U, M, and L in
Fig. 1�a� refer to the upper disk, the midplane, and the lower disk,
respectively. These curves reveal very significant wall slip. For
example, at the rim of the disks, vslip is as high as 36.4% of the
rim speed of the upper disk. Figure 1�b� shows the velocity pro-
files across the gap at different radial positions. Wall slip has
greatly reduced the slope of these curves. The maximum shear
rate is only �100−2�36.4�=27.2% of that given by Eq. �1� when
there is no slip.

The linear relationship between shear stress and r, as described
by Eq. �17�, is shown in Fig. 2 by the straight line “ln.” This stress
is independent of z. The line “ns” on the same plot is the corre-
sponding stress for a Newtonian fluid with the same viscosity but
does not exhibit wall slip. Because of wall slip, the stress on ln is
only 27.2% of that on ns. For ease of comparison, the stress
curves for all the S�vslip� subsequently investigated are summa-
rized in Fig. 2.

5.2 Square Dependence on Slip Velocity. The linear slip
function considered in Sec. 5.1 does not test the numerical perfor-
mance of the Bessel series solution. In this example, the linear slip
law of Navier is generalized to �w=k2vslip

2 . Substituting this into
Eq. �13� yields


�0r + 
�
i=1

	

�i�iJ1��ir�cosh ��ih/2�

= k2��r/2 − �0rh/2 − �
i=1

	

�iJ1��ir�sinh��ih/2�	2

,

0 � r � R �18�

The nonlinear nature of Eq. �18� does not permit the exploitation
of the orthogonal properties of J1��ir� to determine the unknown

coefficients �0 ,�1 ,�2 ,�3 , . . .. Instead, they are determined by
least-squares minimization of the difference between the left hand
side �LHS� and right hand side �RHS� of Eq. �18� at a set of
preselected collocation points. Typically, 150–200 collocation
points uniformly spaced between 0.02�r /R�1 are included in
the minimization process. The region 0�r /R�0.02 has been ar-
bitrarily excluded as v��r ,z� and �w there are too small to be
accurately evaluated. In the least-squares minimization process,
the series representation of v��r ,z� is terminated after N terms,
typically N=10–20. N is adjusted so that the average difference

(a)

(b)

Fig. 1 Linear slip law. „a… Variation of azimuthal velocity with
radius at the upper disk „U…, midplane „M…, and lower disk „L….
„b… Variation of azimuthal velocity with axial coordinate at dif-
ferent radial positions.

Fig. 2 Radial variation of shear stress for no slip „ns…, linear
slip „ln…, square dependence „sq…, square-root dependence „rt…,
and linear slip with critical wall shear stress „cr…. The darker
curves are for the stress at the disk surfaces and the lighter
curves are for the stress at the midplane.
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between the LHS and RHS of Eq. �18� is less than about 1%. As
expected in the neighborhood of r=0, the difference can be as
large as 10–15%. However, this does not appear to have a great
influence on the behavior of v��r ,z�.

The search of the �0 ,�1 ,�2 , . . ., �N that minimize the least-
squares difference was performed using the commercial software
MATHEMATICA

® �10�. The computation starts with a relatively
small N, typically N=5–6, and this is progressively increased
using the previously obtained coefficients as the starting point. To
avoid being trapped by local minima, the minimization computa-
tion was repeated with slightly modified starting values of the
coefficients and also by using different minimization strategies
provided by the commercial software. No numerical difficulties
were encountered in this and in the subsequent examples.

Results for the slip law �w=k2vslip
2 with k2�R2 /
=5 and h /R

=0.15 are summarized in Figure 3. Figure 3�a� shows that, except
at the midplane, v��r ,z� is clearly no longer linear in r. The three
velocity profiles are also much closer to one another compared to
that in Fig. 1�a�, indicating increased wall slip. For example, the
velocity of the fluid at the rim of the upper disk is only 56.8% of
the rim speed giving a vslip of 43.2%. With this vslip, the maximum
shear rate attained is only �100−2�43.2�% =13.6% of that given
by Eq. �1� when the no-slip boundary condition applies. The ve-
locity profiles in Fig. 3�b� show that v��r ,z� approximately re-
mains linear in z for all r. The slight deviation from linearity can
only be observed by plotting ��v� /�z�r against z at different radial
positions, see Fig. 3�c�. In general, for a fixed r, ��v� /�z�r varied
by less than 3.5% for −1 /2
z /h�1 /2. The two curves marked
“sq” in Fig. 2 show the nonlinear variation of the shear stress with
r as a consequence of the square dependence on vslip. The shear
stress at the disk surfaces �w �darker curve� and that at the mid-
plane �m �lighter curve� are very close together, reflecting the
small variation of shear rate with z. These curves also show the
very significant reduction in shear stress brought about by wall
slip.

5.3 Square-Root Dependence on Slip Velocity. The compu-
tation in Sec. 5.2 is repeated for �w=k1/2vslip

1/2 as an example where
the wall shear stress increases less than linearly with vslip. Substi-
tuting this into Eq. �13� resulted in


�0r + 
�
i=1

	

�i�iJ1��ir�cosh ��ih/2�

= k1/2��r/2 − �0rzw − �
i=1

	

�iJ1��ir�sinh��ih/2�	1/2

,

0 � r � R �19�

Least-squares minimization is again used to determine �0 ,�2 , . . .,
�N. The same set of collocation points in Sec. 5.2 was used. It was
found that, for this slip law, a slightly larger number of terms,
25
N
30, of the Bessel series was required to keep the average
difference between the LHS and RHS of Eq. �19� to around 1%.

Plots of the variation of v��r ,z� with r for this slip law, for
k1/2�R /��1/2 /
=5 and h /R=0.15, are shown in Fig. 4�a�. v��r ,z�,
for z�0, is now even more nonlinear in r. This may explain the
increase in N required to represent v��r ,z� to the same degree of
accuracy as before. A reduction in wall slip, compared to the
linear slip law, is observed. The maximum vslip is reduced from
36.4% to 29.3% of the rim speed, see Fig. 4�a�. Consequently, the
maximum shear rate experienced by the Newtonian fluid is now
about 41.4% of that when there is no slip. As in the previous
examples, Fig. 4�b� shows that v��r ,z� approximately remains lin-
ear in z. The slight deviation from linearity is shown in the plots
of ��v� /�z�r against z in Fig. 4�c�. The maximum variation, at
r /R=1, is about 2.0%.

The general lowering of vslip, compared to Secs. 5.1 and 5.2, for

the square-root dependent S�vslip� means that the shear stress is
correspondingly higher. This can be observed from the stress
curves “rt” in Fig. 2. The stress at the disk surfaces �darker curve�
and that for the midplane �lighter curve� are again very close
together confirming that the variation of shear rate with z can be
ignored. The shear stress is again nonlinear in r.

5.4 Fluid With Critical Wall Shear Stress. Materials, such
as polymer melts, do not exhibit wall slip at low wall shear stress.
Wall slip often only becomes noticeable when �w has exceeded
some threshold value. To model this observation, the linear slip
law is modified to

vslip = 0 for �w � �wcrit

(c)

(a)

(b)

Fig. 3 Square dependence wall slip. „a… Variation of azimuthal
velocity with radius at the upper disk „U…, mid plane „M…, and
lower disk „L…. „b… Variation of azimuthal velocity with axial co-
ordinate at different radial positions. „c… Variation of shear rate
with axial coordinate at different radial positions.
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�w = �wcrit + kYvslip for �w � �wcrit �20�

where �wcrit is the critical wall shear stress below which the clas-
sical no-slip boundary condition is observed. kY plays the same
role as k1 in Sec. 5.1. For this generalized S�vslip�, the matching of
boundary condition at the rotating disk takes the form

�r/2 + �0rh/2 + �
i=1

	

�iJ1��ir�sinh��ih/2� = �r for �w � �wcrit

�21a�


�0r + 
�
i=1

	

�i�iJ1��ir�cosh ��ih/2�

= �wcrit + kY��r/2 − �0rh/2 − �
i=1

	

�iJ1��ir�sinh��ih/2�	
for �w � �wcrit �21b�

Because of the antisymmetric nature of v��r ,z�, Eqs. �21a� and
�21b� ensure that Eq. �20� is automatically met at the stationary
disk. As in the last two examples, the coefficients �0 ,�1 ,�2 , . . .,
�N are determined by least-squares minimization of the difference
between the LHS and RHS of Eqs. �21a� and �21b� over a set of
regularly spaced collocation points. In computing the least-
squares deviation, Eq. �21a� applies for 0
r�rcrit and Eq. �21b�
for rcrit
r�R, where rcrit is the radial position for the onset of
wall slip. For a Newtonian fluid with viscosity 
, it is given by

rcrit = �wcrith/�
�� �22�
This expression is based on the assumption that the no-slip bound-
ary condition for r�rcrit is sufficient to ensure that the velocity is
linear in z and hence the wall shear stress is given by 
�r /h. If
the velocity profiles given by the Bessel series indicate significant
deviation from linearity, then an iterative procedure will have to
be adopted to evaluate rcrit. In the least-squares minimization pro-
cess, typically, the span 0
r�rcrit is divided into 100–150 col-
location points and that for rcrit
r�R into 200–300 points.

Typical results for a Newtonian fluid with �wcrit are shown in
Fig. 5. These results are for �wcrit /
�=2, kYR /
=5 and h /R
=0.15. The corresponding rcrit /R=0.3. Figure 5�a� shows the dis-
tinct change in the slope of the v��r ,z� curves at r=rcrit as the fluid
begins to slip at the disk surfaces. As expected, at the lower disk,
v��r ,−h /2�=0 for r�rcrit. The v��r ,−h /2� given by the series
solution shows small fluctuations about 0 for r�rcrit but these
fluctuations do not show up in the scales of Fig. 5�a�. As in the
previous examples, v��r ,z� again appears to be approximately lin-
ear in z, see Fig. 5�b�. The ��v� /�z�r plots in Fig. 5�c� reveal the
small deviation from linearity in z and, in particular, they show
that the most significant deviation is in the neighborhood of r
=rcrit. There the maximum difference in ��v� /�z�r is around
7.65%. At r=R, the maximum difference is reduced to 2.34% �in
the opposite direction�. These were not considered as sufficiently
large to warrant the iterative recalculation of rcrit. The �wcrit has
imparted a very distinctive shape on the shear stress versus r
plots. See the “cr” curves for �w �darker curve� and �m �lighter
curve� in Fig. 2. These curves are highly nonlinear. As expected,
they closely follow the no-slip line ns for r
rcrit. As wall slip sets
in at r=rcrit, these curves sharply change slope. As in the previous
examples, the close proximity of the �w and �m curves confirms
that the variation of shear rate with z can be ignored.

Discussion
For the S�vslip� investigated, the numerical performance of the

Bessel series representation of v��r ,z� appears to be satisfactory.
The method of separation of variables adopted here can, in prin-
ciple, be extended to even more general slip behaviors. For ex-
ample, if the slip behavior of a real fluid can be approximated by
a low order polynomial of the form

�w = �1vslip + �2vslip
2 + �3vslip

3 �23�

where �1 ,�2. . . are known empirical coefficients, then the proce-
dure described above can be applied to obtain the series represen-
tation of v��r ,z�.

Similarly, the treatment of S�vslip� with a �wcrit can be extended
to a more general form of the slip function. However, for such
materials, it is probably more convenient to inverse the relation-
ship between vslip and �w and to express it in the form

(c)

(a)

(b)

Fig. 4 Square-root dependence wall slip. „a… Variation of azi-
muthal velocity with radius at the upper disk „U…, midplane „M…,
and lower disk „L…. „b… Variation of azimuthal velocity with axial
coordinate at different radial positions. „c… Variation of shear
rate with axial coordinate at different radial positions.
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vslip = 0 for �w � �wcrit

vslip = T��w� for �w � �wcrit �24�

where T��w� is a general function of the wall shear stress. For this
type of slip function, a boundary velocity matching condition,
similar to the stress matching condition in Eq. �13�, can be devel-
oped. The main issue here is the numerical performance of this
new matching condition. This has not been investigated.

The present investigation only dealt with Newtonian fluids ex-
hibiting wall slip. Most real fluids that exhibit wall slip are likely
to simultaneously exhibit one or more non-Newtonian behaviors.
It is therefore of practical interest to extend this slip investigation
to non-Newtonian fluids. Unfortunately, the non-Newtonian
equivalent of Eq. �2� that forms the starting point of this investi-

gation is nonlinear and the standard method of separation of vari-
ables becomes inapplicable. For this class of more general prob-
lems, it is more efficient to resort to finite element computation.
This is currently under progress. The Newtonian results reported
here can then be used as a special case in the validation of the
finite element method �FEM� results.

As mentioned above, the method of Yoshimura and
Prud’homme �1� is now widely used in the determination of
S�vslip�. One of the key assumptions in this method is that the
shear rate in the gap is function of r only and is independent of z.
The shear rate plots in Figs. 3�c�, 4�c�, and 5�c� show that, for the
S�vslip� investigated, the shear rate is not exactly independent of z.
However, as the variation is generally less than 10%, this small
variation can most probably be ignored. Similarly, only small
variations in shear rate were observed for h :R as large as 0.2 �not
shown�. Since in most parallel-disk viscometry measurements
h :R
0.2, one is therefore justified to apply the method of
Yoshimura and Prud’homme to determine wall slip.

For the case of linear wall slip, the shear stress remains linear in
r as is expected of a Newtonian fluid. From the shear stress plots
in Fig. 2, it is clear that, even for a Newtonian fluid, this stress is
no longer linear in r for a general S�vslip�. This has an important
practical implication on the processing of the �-� data of parallel-
disk viscometry. The measured torque � is often converted into
shear stress �R at the rim of the disks using the simple expression

�R = 2�/��R3� �25�
This is the expression implemented in many of the software that
accompany the current generation of parallel-disk viscometers.
Equation �25� is an approximation and is strictly valid only when
the shear stress is linear in r as is in the case of a Newtonian fluid
that does not exhibit wall slip. The exact expression relating �R to
� is �7�

�R =
�

2�R3�3 +
d loge �

d loge �̇R
	 �26�

where �̇R=�R /h is the shear rate at the rim of the disks. The main
reason for adopting the approximate equation �25� instead of the
exact equation �26� is that the evaluation of the derivative term on
the RHS of Eq. �26� is difficult and is likely to amplify the noise
in the �-� data. For Newtonian fluid with nonlinear wall slip and
certainly for non-Newtonian fluids with or without wall slip, the
use of Eq. �25� is likely to lead to significant error and is therefore
not recommended �11�.

Conclusion
The method of separation of variables gave a reliable series

representation of the azimuthal velocity for Newtonian fluids in
steady parallel-disk flow in the presence of wall slip. The solution
shows that the azimuthal velocity approximately remains linear in
z and hence justifies the use of the procedure of Yoshimura and
Prud’homme for the determination of the wall slip function. As a
consequence of wall slip, the wall shear stress, even for a New-
tonian fluid, is no longer linear in r. This is not consistent with the
key assumption of the simple but very popular method for con-
verting the measured torque into rim shear stress.
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Marginal Instability and
Intermittency in Stochastic
Systems—Part I: Systems With
Slow Random Variations of
Parameters
Dynamic systems with lumped parameters, which experience random temporal varia-
tions, are considered. The variations may “smear” boundary between the system’s states,
which are dynamically stable and unstable in the classical sense. The system’s response
within such a “twilight zone” of marginal instability is found to be of an intermittent
nature, with alternating periods of zero (or almost-zero) response and rare short out-
breaks. As long as it may be impractical to preclude completely such outbreaks for a
designed system, subject to highly uncertain dynamic loads, the corresponding system’s
response should be analyzed. Results of such analyses are presented for cases of slow and
rapid (broadband) parameter variations in Parts I and II, respectively. In the former
case, the “nominal” system—one without variations of parameter(s)—is stable in the
classical sense. Its transient response during the “slow” short-term excursions of the
parameter(s) into the instability domain is described by a linear model. The analysis is
based on Krylov–Bogoliubov averaging over “rapid” time within the response period
together with parabolic approximation for the parameter variations in the vicinity of
their peaks (so-called Slepian model). Solution to the resulting deterministic transient
response problem with random initial condition(s) at the instant of upcrossing the stabil-
ity boundary yields a relation between peak value(s) of the response(s) and that of the
parameter(s); in this way, reliability study for the system is reduced to a probabilistic
analysis of the parameter variations. The solutions are obtained for the cases of negative-
damping-type instability in a SDOF system and for TDOF systems with potential dynamic
instability due to coalescing or merging of natural frequencies; the illustrating examples
of applications are rotating shafts with internal damping, two-dimensional galloping of a
rigid body in a fluid flow and a row of tubes in a cross flow of fluid. The response is of the
intermittent nature due to the way it is generated, with alternating relatively long periods
of zero (or almost-zero) response and short outbreaks due to temporary excursions into
the instability domain. �DOI: 10.1115/1.2910900�

1 Introduction
Classical definitions of stability and instability deal with long-

term behavior of dynamic systems, that is, behavior as time t
→�. These definitions are quite adequate for numerous engineer-
ing applications, where long-term operation of the systems is in-
deed required. However, they may become not perfectly appropri-
ate for applications with limited service life, such as missiles,
projectiles, etc. In such applications, a system may sometimes be
qualified as acceptable in spite of being unstable in the classical
sense as long as its deviations from the design state are small
enough for successful and safe operation. Thus, design of such
marginally unstable systems may be based on analysis of their
transient response within limited service life.

The classical definitions of stability and instability may also
prove to be not perfectly adequate for another class of dynamic
systems—those that may be intended for long-term operation.
Such systems are designed, as a rule, to operate within their sta-
bility domain in the classical sense as long as their “nominal”
design parameters are considered. However, if the system’s pa-

rameters may experience random temporal variations around their
nominal or expected values, the system may become “temporary
unstable” occasionally whenever the “classical” instability bound-
ary is crossed. Whenever complete elimination of such excursions
of the system out of its stability domain may lead to impossible or
impractical design, the corresponding short-time outbreaks in re-
sponse should be analyzed to evaluate the system’s reliability.

The resulting dynamic response of a system may be expected to
be of an intermittent nature, whereby relatively long periods of
zero or almost-zero response are alternating with relatively rare
spontaneous short-period high-level outbreaks. The name “inter-
mittency” is used in Fluid Mechanics for transitional regimes be-
tween laminar and turbulent flows. The complete transition usu-
ally requires finite change in the basic control parameter, such as
the Reynolds number, and within the transitional range sporadic
alternations or on/off switching between laminar and turbulent
flow patterns can be observed. More recently, the name was ap-
plied, by analogy, to dynamic systems with lumped parameters
that exhibit potential for such “noninstantaneous” transition to
chaos—with sporadic outbreaks in chaotic response within the
transitional zone and zero or almost-zero response between the
outbreaks; for an extensive survey of the topic, see Ref. �1�.

In this paper, analytical studies are presented for intermittency
in systems with lumped parameters subject to externally imposed
random variations of parameters. These variations may “smear”
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the stability boundary of a given system, that is, expand it into the
transitional zone; the system may then be become marginally un-
stable in the classical sense. Within such a zone, spontaneous
high-level and relatively rare outbreaks alternate with periods of
almost-zero response. This behavior of the response may also be
qualified as being intermittent indeed. Its analysis may be of im-
portance for engineering as long as it may be impractical for some
applications to completely preclude the system’s operation within
the transitional zone; this may be the case, for example, with a
structure subject to wind loads due to hurricanes and/or ocean
wave loads in severe storms. Thus, problems of first-passage fail-
ure and/or of low-cycle fatigue may be of concern for a system
operating within the transitional state. These problems can be
treated by existing methods for analysis of random vibrations,
which provide possibility for estimating system’s reliability in the
design analysis. Furthermore, relevant dynamic studies may also
be of importance for interpretation of test results for a machine or
structure, where intermittent behavior of the response is observed.

This paper presents results of such dynamic response analyses
for two distinctly different types of intermittent response in sys-
tems with randomly varying parameters. The first type, as consid-
ered in this Part I, corresponds to systems with slow stationary
random temporal variations of parameters compared to the sys-
tem’s natural frequency�frequencies�. The systems considered
clearly operate within classical stability domain for the mean or
nominal system, i.e., one without parameter variations. Therefore,
the system’s response is zero as long as random variations of
parameter�s� do not make the system temporary unstable. On the
other hand, any brief excursion beyond the instability threshold
would lead to growth of the system’s response. The growth is
assumed to be limited as long as the system quickly returns back
into the stability domain. The response would be seen then as a set
of spontaneous brief outbreaks alternating with intervals of zero
response. Thus, it is the case of intermittency. Basically, the re-
sponse is transient during each outbreak and the system just “does
not have time to escape into infinity.” Therefore, linear model of
the system may be adequate at least qualitatively �if not quantita-
tively�. The method for analysis as used in this paper is based on
parabolic approximation for temporal variation�s� of parameter�s�
during its �their� brief excursions into instability domain �2�,
which is also called asymptotic theory of the so-called Slepian
model for the process �3�. In this way, the problem of random
vibration is reduced to a transient problem with random initial
conditions rather than with random excitation. Moreover, as long
as solution to the transient problem is obtained—either by ap-
proximate analytical approach as in Refs. �4,5�, or numerically—
the whole problem of response analysis is reduced to statistical
analysis of the random variations in the system’s parameter�s�—
more specifically in bifurcation parameter, which defines magni-
tude of nonconservative force�s� responsible for potential dynamic
instability; theory of excursions of random processes is essentially
involved in this analysis. Results are presented for a single-
degree-of-freedom �SDOF� system with randomly varying damp-
ing and for two-degrees-of-freedom �TDOF� systems with bifur-
cation due to coalescing or merging of the system’s natural
frequencies. Specific potential examples of application are rotat-
ing shaft with temporal variations in its apparent internal damp-
ing, two-dimensional galloping of a rigid body in a flow with
temporal variations of flow speed, and TDOF flutter in a row of
tubes in a cross flow of fluid with temporal variations of flow
speed.

Another type of marginal instability and intermittency will be
considered in Part II, where the parameters’ variations are as-
sumed to be broadband with respect to the system. The systems
with such parameter variations operate within the domain of sto-
chastic instability although very close to the corresponding insta-
bility threshold; the adequate modeling for their steady-state re-
sponse clearly requires the system’s nonlinearity to be accounted
for. Analysis of these marginally unstable systems is based on the

theory of Markov processes and solutions to the Fokker-Planck-
Kolmogorov �FPK� equations for the response probability density
function �PDF�.

The Slepian model of a stationary zero-mean random process
g�t� with unit standard deviation implies its parabolic approxima-
tion in the vicinity of its peak, which exceeds a given level u
�3�—that is during upcrossing level u that starts at time instant t
=0

g�t/u� � u + �1/u���t − �2t2/2�

so that g�t� � u + �t − �u/2���t�2

for t � �0,2�/�2u� and

maxtg�t� = g��/�2u� = gp = u + �2/2�2u �1�

Here, subscript p will be used for peak values of random pro-
cesses, � is the random slope of g�t� at the instant of upcrossing,
and �2=�ġ

2=�−�
� �2�gg���d�, where �gg��� is power spectral

density �PSD� of g�t� so that � is a mean frequency of g�t�. Thus,
according to the parabolic approximation �1�, the random process
g�t� is regarded as deterministic within the high-level excursion of
duration � f =�tf =2� /�u above level u, depending just on its initial
slope � at the instant of upcrossing. This slope is regarded as a
random variable for the excursion; in particular, it has a Rayleigh
PDF in case of a Gaussian g�t� �2,3�. Furthermore, the instant of
downcrossing � f is clearly obtained as a second root of equation
g�t�=u, the first one being t=0. This probabilistic description may
be used together with the solution for the transient response within
the instability domain.

2 SDOF System With Potential Instability of the
Negative-Damping Type

The equation of motion of the SDOF system is

Ẍ + 2�� − q�t��Ẋ + 	2X = 0 �2�

where q�t� is a zero-mean stationary random process with PSD
�the actual mean value �q� of the additional negative damping
coefficient due to an external nonconservative force may be just
deducted from the coefficient of structural damping �s so that �
=�s− �q��. The total mean damping coefficient � is assumed to be
positive so that the system is dynamically stable �asymptotically�
in the mean and its response should be zero as long as the total
damping coefficient �−q�t� remains positive. However, if this
randomly varying damping coefficient may occasionally cross the
zero level, the outbreaks in response would be observed within
finite time intervals. Denoting

q�t� = �qg�t� and u = �/�q �3�

where �q is standard deviation of the process q�t�, we may sub-
stitute the parabolic approximation �1� into the stochastic equation
of motion �2�, thereby reducing it to an ordinary differential equa-
tion �ODE� with a single random parameter �. This ODE for a
certain representative crossing should be integrated starting from
the instant of upcrossing denoted by tu; the final instant for inte-
gration should correspond �at least� to the peak of the response
X�t� for a given outbreak.

The problem of transient response can be solved analytically
for the present case using the asymptotic Krylov–Bogoliubov
�KB� method of averaging over the response period for the quite
common case of a lightly damped system �1� with slow temporal
variations of the damping coefficient: 	�−q�t�	
	, ��	 �4�.
With these assumptions being adopted, the solution may be ap-
proximated by that for the undamped system, namely,
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X�t� = A sin �, Ẋ�t� = 	A cos �, � = 	t + � �4�

where A�t� and ��t� are now slowly varying functions. The pro-
cedure results in a simple ODE for the new state variable 

=ln A �4� as follows:


� = ��q/�����/��� − u�2/2� �5�

where primes denote differentiation over nondimensional local
time �=��t− tu� with origin at the upcrossing instant tu. Integrat-
ing this ODE yields, finally,

A��� = A0 exp
��q/�����/����2/2� − u�3/6�� where A0 = exp�
�0��
�6�

It is clear that response outbreaks are possible only with a non-
zero value of the initial response amplitude A0, which should be
estimated somehow from a subcritical response analysis. On the
other hand, whenever the inverse problem of interpreting mea-
sured response is considered, a simple formula as presented later
may be used for estimating A0 from the observed signal.

It can be seen from the above analysis that the peak value of the
response amplitude is attained precisely at the final instant of the
excursion into the instability domain � f =2� /�u; at this instant, the
right-hand side �RHS� of the ODE �5� becomes equal to zero once
again. The peak amplitude as found from solution �6� is

Ap = A�� f� = A0 exp�2�� where � = ��q/3�u2���/��3 �7�

This solution together with Eq. �1� define in parametric form the

relation between Āp=Ap /A0 and gp—which is between peak val-
ues of the amplitude ratio and of g�t�—as long as both these peak
values are obtained as functions of the random nondimensional
slope � /� of the damping coefficient variation at the instant of the
excursion. The explicit relation can be simply derived by exclud-

ing � /�. Let Āp=h�gp� for gp�u. Then, the function inverse to h
�denoted by superscript “−1”� can be obtained as

gp = u + ��/��2�1/2u� = h−1�Āp� = u + �1/2u���3�u2/2�q�ln Āp�2/3

�8�

These relations open the way to predicting reliability for system
�1� based on relevant statistics of g�t�. Thus, the first-passage
problem for A�t� with barrier A* is reduced to that for g�t� with

barrier g*=h−1�Ā*�, as evaluated by using relation �8�. Further-

more, the PDF of g�t� can be used to obtain the PDF of Āp and
thus of the local peaks of X�t� within the cluster of response
cycles with peak amplitude Ap; this may be of importance for
evaluating low-cycle fatigue life for a system subject to the short-
term dynamic instability. The derivation includes two steps. First,
the PDF pg�gp� of peaks of g�t� is obtained from that of the g�t�
itself as described in Refs. �2,3�; then, the basic relation for the
PDF of a nonlinear function of a random variable is applied as
follows:

p�Āp� = pg�h−1�Āp��	dh−1/dĀp	 �9�

It should be just kept in mind that this PDF is nonzero for Āp

�1 rather than for Āp�0, as long as the subcritical response
amplitude A0 has been introduced. Furthermore, according to re-

lations �8� and �9�, this PDF has a singularity at Āp=1. It goes

without saying that the unconditional PDF p�Āp� is normalized
not to unity but to Prob
gp�u�. Its direct use for predicting reli-
ability in engineering applications is possible as long as some
information on the most probable actual subcritical response am-
plitude A0 is available.

The corresponding prediction of the PDF of the actual �non-
scaled� response amplitude and/or its peaks may be improved if

PDF p�A0� of the random variable A0 is known. Thus, assuming
random variables A0 and � to be independent, one can write

p�Ap� =�
0

�

p�Ap/A0�p�A0�dA0 �10�

The solution �9� has been verified in Ref. �4� by direct numerical
simulation of the basic equation �1� with Gaussian q�t� and with
small Gaussian white noise being added to its RHS in order to
provide nonzero initial response amplitudes for each upcrossing of
the level � by q�t�. This external excitation used to be turned off
immediately upon each upcrossing and brought back upon the
corresponding downcrossing. Therefore, this procedure provided
really free motion during short-term instability, as assumed in the
theory, and it was found to be very important indeed for achieving
good accuracy of the estimated PDFs—particularly in view of
difficulties in dealing with rare upcrossings. The initial amplitudes
A0 have been measured directly from the response sample X�t� for
every upcrossing and in the original simulation runs �4� were used

to calculate the relative amplitudes and their peak values Āp
=Ap /A0 �calculation of amplitudes has been based on the Hilbert
transform�. These simulations �4� demonstrated good agreement
between the theoretical relation �9� and the direct numerical esti-

mate for p�Āp� except for very high-amplitude range, where the
observed peaks were extremely rare indeed �only three excursions

were observed at the level Āp=5 with sample length of 142 h and

only one or two excursions at each of the higher levels of Āp�.
Figure 1 illustrates new simulation results for the same system

parameters and setup as in Ref. �4�, which now provide verifica-
tion for theoretical solution �10� for the PDF of “physical,” i.e.,
nonscaled peak amplitudes �see short part of the sample of X�t� in
Fig. 1�a� where for convenience this process has been scaled to its
standard deviation whereas total processed sample contained

about 300,000 periods of X�t��. Theoretical expression for p�Āp� is
compared with the corresponding histogram in Fig. 1�b�. The
former one has been normalized here to its theoretical value for
Rayleigh-distributed peaks of the Gaussian process, that is,
Prob
gp�t��u�=exp�−u2 /2�, which equals 0.1353 for u=2,
whereas the histogram has been normalized to direct estimate of
this probability calculated as the ratio of upcrossings of the level u
to that of the zero level. The present procedure for processing data
included compiling values of A0 at each upcrossing and estimating
their PDF p�A0�. The resulting histogram is shown in Fig. 1�c�
together with the curve of its best fit by Rayleigh PDF with pa-
rameter 1.32 �standard deviation of the corresponding Gaussian
process�, which is seen to provide close analytical approximation
for p�A0�. This expression was substituted into the theoretical so-
lution �10�, which is seen to be in good agreement with directly
measured p�Ap�, as shown in Fig. 1�d�.

In concluding this section, a procedure should be mentioned for
identification of system �2� from its observed intermittent re-
sponse with nonoverlapping outbreaks �4�. It is based on the ana-
lytical solution �6� for amplitude, which is applied to the instants
of peak amplitude and those of corresponding inflexion points of
the curves ln A�t� at the parts of outbreaks with increasing ampli-
tude. The procedure based on averaging over all observed out-
breaks provides estimates for mean frequency and standard devia-
tion �, �q of the parameter variations together with the total
nominal or expected damping factor u�q.

3 TDOF Systems With Axial Symmetry
In this section, the basic approach is applied to a special class

of TDOF systems with certain symmetry properties that make
them amenable to analytical solution for the transient response
through the use of a single complex state variable. The first ex-
ample of such a system is a simple axisymmetric Jeffcott rotor
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with both external, or “nonrotating” and internal or “rotating”
viscous damping; the latter is assumed to contain component�s�
due to nonconservative fluid and/or magnetic forces, which may
experience temporal random variations. The analytical solution
for PDF of the rotor’s translational vibrations during short-term
excursions into the instability domain has been obtained in Ref.
�5� according to the same procedure as described in Sec. 2. This
was found to be possible through the use of a single complex
variable z=x+ iy for lateral displacements x, y of the rotor’s disk
into two perpendicular directions; an explicit expression for the
shaft’s radius of whirl r�t�=
x2+y2 has been derived accordingly.
Similar approach is presented in this section for the case of angu-
lar vibrations �tilting� of the disk.

We consider another simple TDOF rotor, which also has a disk
at midspan of a weightless shaft similarly to the basic Jeffcott
rotor. In the present case, however, the bearings impose complete
restraint of lateral transverse displacements of the disk while per-
mitting angular oscillations or tilting of the disk around its trans-
verse axes x and y. �This constraint is visualized in Ref. �6� as
being provided by a thin circular plate normal to the shaft’s axis,
which has infinite in-plane stiffness and finite stiffness in bend-
ing�. Denoting by �x, �y the corresponding rotating �tilting�
angles and by K the total apparent rotational stiffness as provided
by shaft and/or bearings one can write the following pair of the
equations of motion �6�:

�̈x + 2��̇x + 	2�x + �
�̇y + 2�
�y = 0

�̈y + 2��̇y + 	2�y − �
�̇x − 2�
�x = 0 �11�

Here, 
 is rotation speed whereas 	=
K /J and �=Jp /J where J
and Jp are mass moments of inertia of the rotor about anyone of
transverse axes and about rotation axis, respectively. Furthermore,
�=�+� where �=cn /2J, �=ci /2J, and cn, and cr are, respec-
tively, coefficients of external, or nonrotating and internal or ro-
tating linear viscous damping. It should be noted that except for
the “gyroscopic” term, i.e., one with polar moment of inertia, Eq.
�11� possesses complete similarity with the equations of transla-
tional lateral displacements. Namely, the latter may be written in
the form �11� with �=0 and �x, �y replaced by x, y, respectively,
whereas the disk’s mass m should be substituted for its moment of
inertia J �5� �and it goes without saying that relevant damping
coefficients c for translational rather than tilting motions should
be used�. Thus, in case �→0, the present analytical solution for
transient response has the same form as the one obtained in Ref.
�5� for translational vibrations.

Introducing complex rotation angle �=�x+ i�y, where i=
−1,
one can replace the two differential equations �11� by the follow-
ing equivalent single equation:

�̈ + 2��̇ + 	2� − i�
�̇ − 2i�
� = 0 �12�

Now let the internal damping coefficient be time variant so that
��t�= ���+q�t�, where angular brackets denote probabilistic aver-
aging; for its zero-mean part q�t�, we shall use corresponding
process g�t� with unit standard deviation �see relation �3��, which

(c)

(a)

(d)

(b)

Fig. 1 Short-term single-mode dynamic instability: comparison of theory with direct numerical simulation
equation „2… for cases �=2.0 s−1, �=0.16 s−1, �=0.1 s−1, and u=2. „a… A short sample of q„t… illustrating “out-
break” in X„t… corresponding to upcrossing level 0.16 „nonzero response within stability domain is due to
additional random RHS in the equation, which is needed to provide initial conditions for transients due to
instability…; „b… theoretical PDF of scaled amplitude Āp=Ap /A0 and corresponding histogram as obtained from
sample of X„t…; „c… histogram of directly measured initial amplitudes—values at the instants of upcrossing—
and the corresponding curve of Rayleigh PDF, which provides the best fit of the data; and „d… PDF of
“physical”—nonscaled—peak response amplitude as calculated according theoretical solution based on the-
oretical Rayleigh PDF of initial amplitudes and corresponding histogram of directly measured peak response
amplitudes.
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will be approximated by the Slepian model �1�. Assume now that
both damping ratios in Eq. �12� are small and temporal variations
are slow �as in Sec. 2�: � /	
1, � /	
1, and �
	. Equation
�12� may then be analyzed by asymptotic KB averaging over
the period. The following change of variables is introduced
accordingly.

� = A+ exp�i�+t� + A− exp�− i�−t� ,

�̇ = i�+A+ exp�i�+t� − i�−A− exp�− i�−t�

�� = 
	2 + ��
/2�2 � �
/2 so that �+ − �− = �
 , �13�

�+ · �− = 	2

Here, subscripts “plus” and “minus” are used for the forward and
backward whirls, respectively. The corresponding two whirl
speeds, �, which are seen to be different due to gyroscopic effect,
have been obtained here as “generating” solutions to Eq. �12� with
�=0, �=0. The amplitudes A of the forward and backward whirls
would be slowly varying functions of time under the above as-
sumptions. Thus, resolving relation �13� for A+ and differentiating
yield

Ȧ+ =
�−

�+ + �−

d

dt
��� + �̇/i�−�exp�− i�+t��

=
�−

�+ + �−
��̇ − ��+/�−��̇ − i�+� + �̈/i�−�exp�− i�+t�

= ��+ + �−�−1�− �
�̇ − i��̈ + 	2���exp�− i�+t�

= ��+ + �−�−1�2i��̇ + 2�
��exp�− i�+t�

� 2A+��+ + �−�−1�− ��+ + 
�� �14�

The last approximate equality is obtained by substituting expres-
sion �13� for �x and �y and applying KB averaging, which implies
just neglecting terms with complex exponents; slowly varying
function ��t� is regarded as fixed throughout this averaging over
the “fast” time �7�. The resulting asymptotic equation for the am-
plitude of forward whirl is seen to be uncoupled from that of
backward whirl. The latter can be derived similarly but it is not
needed here since dynamic instability is possible only in the for-
ward whirl mode; it happens whenever the cofactor in the utmost
right parentheses in the RHS of Eq. �14� is positive.

Equation �14� is now brought into the format of the basic pro-
cedure by introducing once again scaled nominal stability margin
u, which is now defined as

u =
1

�q
��

*
− ���� where �

*
=

�


/�+ − 1
�15�

Introducing now the same nondimensional local time �=��t− tu�
as before, with origin at the instant for upcrossing level u by g�t�
and applying parabolic approximation for the latter, we obtain
from Eq. �14� the following first-order ODE for the state variable
v=ln A �the subscript “plus” is dropped hereafter in this section as
long as backward whirl is not involved at all�:

v� = dv/d� = ���q/�����/��� − u�2/2�

where � = 2�
 − �+�/��+ + �−�

= 
�1 − �/2�/
	2 + ��
/2�2 − 1 �16�

It should be noted that this ODE is only valid provided that �
�0 or 
��+; otherwise, upcrossing the instability threshold by
��t� would not be possible at all. This condition can be rewritten
as 
�	 /
1−�, which indicates that instability in tilting is pos-
sible only for shafts with moments-of-inertia ratio less than unity.
In the limiting case of diminishing gyroscopic effect, �→0, we
have �=
 /	−1, and the ODE �16� is reduced, as suggested ear-

lier, to the one obtained in Ref. �5� for the case of translational
vibrations.

Integrating the ODE �16�, we obtain the following analytical
solution for the amplitude of forward whirl �compare with Eq. �6��

A��� = A0 exp
���q/�����/����2/2� − u�3/6��

where A0 = exp�v�0�� �17�

This solution may be used to obtain the PDF of peaks of A�t� in
terms of that of peaks of g�t�, as illustrated in Sec. 2; similarly,
first-passage problems for A�t� may also be reduced to those for
g�t�.

4 General TDOF Systems
General case of marginally unstable TDOF system will be con-

sidered in this section using the same procedure that relies on
parabolic approximation for slow temporal random variations of
the bifurcation parameter. However, contrary to the special case
studied in Sec. 3, the equations of transient motion during short-
term instability cannot be reduced now to a single state variable.
Thus, two coupled response variables �amplitudes� remain after
KB averaging for the case of lightly damped system, thereby re-
quiring numerical integration for the two ODEs of slow motion
from starting point of the response outbreak till the instant when
both response variables pass their peaks. Then, as long as relation
is established �numerically� between peak value�s� of response�s�
and that of scaled zero-mean part g�t� of the bifurcation param-
eter, the basic procedure can be applied for predicting response
PDF. Several examples of such analysis are presented in the
following.

4.1 Rotating Shaft With Anisotropy in Support Stiffness.
We consider translational transverse vibrations of a rotating Jeff-
cott rotor with disk of mass m. Because of anisotropy in the stiff-
ness properties of the shaft’s supports, the total apparent stiff-
nesses of the shaft are not symmetric �the case of nonrotating
anisotropy �8��. Let kx and ky be principal stiffnesses correspond-
ing to directions x and y, respectively. Introducing complex dis-
placement z=x+ iy to represent 2D vector of the disk’s transverse
displacements, one may write the following single complex dif-
ferential equation of motion �8�:

z̈ + 2�ż + 	2z + �	2z̄ − 2i�
z = 0 �18�

Here, the bar denotes complex conjugate of z and

	 = 
km/m, km =
1

2
�kx + ky�, � =

kx − ky

kx + ky
,

� = � + � where � = cn/2m, � = ci/2m

Here, cn and cr are, respectively, coefficients of external or non-
rotating, and internal or rotating linear viscous damping �with
corresponding damping forces being related to translational
motion�.

For the case of zero “mistuning factor” �, Eq. �18� reduces to
the one solved explicitly in Ref. �5�. The general case of nonzero
� will be studied in the following by KB averaging assuming this
factor to be small; assumptions of small damping ratios and slow
temporal variations of the internal damping coefficient, similar to
those used in Sec. 3, will be adopted here as well.

We introduce now amplitudes of forward and backward whirls
z+�t� and z−�t�, respectively, as new state variables according to
relations

z = z+ exp�i	t� + iz− exp�− i	t� ,

ż = i	z+ exp�i	t� + 	z− exp�− i	t� �19�

These relations are resolved for slowly varying functions z+�t� and
z−�t� and resulting expressions are differentiated. The RHSs of the
resulting two first-order ODEs are found to be proportional to a
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small parameter in view of the assumptions adopted. Thus, KB
averaging over response period 2� /	 can be applied �7�, which
reduces to neglecting terms with complex exponents of fast time;
the slowly varying internal damping factors are once again re-
garded as constant in the fast time �but not in the slow time�. This
results in the following set of real reduced ODEs, which are found
to be coupled through the mistuning of the natural frequencies in
the x and y directions:

ż+ = �− � + ��
/	 − 1��z+ + ��	/2�z−

ż− = − ��	/2�z+ − �� + ��
/	 + 1��z− �20�
System �20� is asymptotically stable as long as its determinant is
positive. Equating the determinant to zero yields condition for
neutral stability resulting in quadratic equation for instability
threshold in terms of critical value of the internal damping factor.
This critical value as denoted by a star subscript is found to be

�
*

=
� + 
��
/	�2 + ��
/	�2 − 1���	/2�2

��
/	�2 − 1�
�21�

Now, for the process ��t�= ���+q�t�, we introduce once again its
scaled zero-mean part g�t�=q�t� /�q, where �q is standard devia-
tion of q�t�, whereas scaled positive stability margin u of the mean
or nominal rotor is still defined by basic formula �15� but with
expression �21� for the instability threshold. The ODEs �20� may
now be applied to describe the response outbreak after upcrossing
instability threshold at time instant t= tu. Using the introduced
definitions in Eq. �20� and applying parabolic approximation for
g�t� yield the final set of ODEs in the transformed local time

�z+� = 
− � + �
*
�
/	 − 1� + �q���/��� − u�2/2��
/	 − 1��z+

+ ��	/2�z−

�z−� = − ��	/2�z+ − 
� + �
*
�
/	 + 1� + �q���/��� − u�2/2��
/	

+ 1��z− �22�
These ODEs should be integrated starting from initial values of
response amplitudes at �=0. An example with Gaussian q�t� and
	=1 s−1, �=0.02 s−1, �=0.01 s−1, and 
=1800 rpm has been
considered for various values of the mistuning parameter � with
parameters of ��t� being kept fixed. The case �=0.001, u=2 has
been chosen as the reference one and relation ���=0.5�* has been
imposed for this case; values of u have been calculated for other
cases accordingly as u=2.12, 2.46, and 4.38 for �=0.01, 0.02, and
0.05, respectively.

Numerical solutions for z+ and z− were obtained for initial con-
ditions �ICs� with imposed ratio of these state variables as defined
by eigenvector of the matrix in the RHS of the ODEs �20� �that is,
the same ratio as at the neutral stability boundary�. Amplitude or
rather whirl radius A=
z+

2 +z−
2, which is proportional to its initial

value A0=A�0�, has been calculated then as a function of nondi-
mensional local time �. Peak values of A��� were identified from

the numerical solution and ratios Āp=Ap /A0 were used to calcu-
late their PDFs, as presented in Fig. 2. It should be noted that the
upper curve—one for the reference case with very small �
=0.001—practically coincides with the corresponding analytical
solution for �=0 �4�. Figure 2 clearly illustrates reduction of tran-
sient responses with increasing mistuning between the shaft’s
natural frequencies in two directions.

4.2 Two-Dimensional Galloping of a Rigid Body in a Fluid
Flow. As another example, we consider an infinite rigid horizontal
cylinder with blunt cross section. The cylinder is mounted on
elastic suspension springs and is subject to a fluid cross flow. The
name “galloping” was introduced in first studies initiated in 1930s
with applications to cross-flow �vertical� response of ice-covered
transmission power lines excited by wind. Basic SDOF model was

used and their potential single-mode instability had been estab-
lished by Den-Hartog �9� for cross-sectional shapes with negative
rather than positive slope of lift curve �versus angle of attack�.
This case can clearly be handled by the procedure of Sec. 2 �see
also Ref. �4�� whenever the speed of wind is subject to temporal
random variations.

More recent studies indicate, however, that horizontal vibra-
tions �along flow� very often may also be present, which are
coupled with the vertical ones and should not be ignored �see Ref.
�10� and references cited there in�. Thus, the same TDOF model
as in Ref. �10� will be considered �with certain obvious changes in
notation� with full two-by-two aerodynamic damping matrix B
but for special case of identical stiffnesses of suspension springs
in directions x �horizontal� and y �vertical�. Two differential equa-
tions for displacements in these directions may be written as

ẍ + 2�ẋ + 	2x + ��t���xxẋ + �xyẏ� = 0

ÿ + 2�ẏ + 	2y + ��t���yxẋ + �yyẏ� = 0 �23�

Here, four coefficients �, which are elements of the aerody-
namic damping matrix B, depend on lift and drag factors and their
derivatives over angle of attack according to the relations that are
presented in Ref. �10� together with expression for scaled flow
speed �. The latter is assumed here to experience slow temporal
variations. System �23� has only one natural frequency due to the
assumption of equal stiffnesses in x and y directions, whereas � is
an equivalent viscous damping of the cylinder assumed to be iden-
tical in two directions.

The case of lightly damped system �23� has been analyzed in
Ref. �10� by perturbational approach that leads to interesting ex-
plicit expressions for periodic oscillations. The same assumption
of small damping ratios will be adopted here for analysis by the
KB averaging �7�, which provides similar reduction for transient
problems. For this application, it may seem preferable to deal with
real rather than complex quantities, so that solution to Eq. �23� is
sought in the form x=xc cos 	t+xs sin 	t, ẋ
=	�−xc sin 	t+xs cos 	t� together with similar change of vari-
ables y and ẏ. Resolving these relations for new slow state vari-
ables and differentiating, we obtain four first-order ODEs with
small parameter in their RHSs. Thus, averaging over the response
period 2� /	 in rapid time can be applied, once again with fixed
bifurcation parameter � in rapid time. This results in two identical

Fig. 2 Theoretical PDFs of scaled peak radius of whirl of ro-
tating shaft with temporal random variations of the internal
damping for different values of mistuning factor
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uncoupled equations for 2D vectors: zc= �xc ,yc�T and zs

= �xs ,ys�T, where superscript T denotes transposed vector

żc = �− �I −
1

2
��t�B�zc and żs = �− �I −

1

2
��t�B�zs

�24�

where I is identity matrix.
Condition for neutral stability of zero solution to any one of the

ODE’s �24� is that of zero determinant of the matrix in braces.
Imposing this condition yields a quadratic equation for critical
value of the bifurcation parameter which, will be denoted by a star
subscript. For the example to be presented, we assume that Tr B
��xx+�yy �0, Det B��xx�yy −�xy�yx�0. Then,

�
*

= −
�

Det B
�Tr B + 
�Tr B�2 − 4 Det B� �25�

The parabolic approximation for g�t� may be applied once
again, thereby reducing the problem to solution of any one of the
vector ODEs �24� with

��t� � ��� + �qg�t� = �
*

− �q�u − g�t��

= �
*

+ �q��t − �u/2���t�2�, where u = ��
*

− ����/�q

and �* as defined by expression �25�. Numerical integration has
been performed for cases 	=1 s−1, �=0.007 s−1, and �
=0.01 s−1 and the same aerodynamic damping matrix as in one of
the examples presented in Ref. �10�, namely,

�xx = 2.14, �xy = 0.46, �yx = 1.2,

�yy = − 0.32 so that �
*

= 0.0266

Figure 3 shows PDF p�Āp� of Āp=Ap /A0. Here, Ap is peak
value of yc��� in this case whereas A0=yc�0� and xc�0� has once
again been assigned according to the same eigenvector condition
as in Sec. 4.1.

4.3 TDOF Flutter of a Tube Row in a Cross Flow of Fluid.
A certain flutter-type mechanism of dynamic instability due to
nonconservative fluid forces has been proposed and studied in
Ref. �11� and extended in Ref. �12� for a tube row in a cross flow
of fluid. It is related to proximity effect and corresponding cross
stiffnesses of two neighboring circular cylinders �tubes�. Each
tube is assumed to have two DOFs corresponding to motions
along and across the flow with displacements xj and yj, respec-
tively, where j is number of tube �single spanwise mode may be

considered for each direction in case of elastic tubes�. General
equations of motion of the row of identical tubes accounting for
linearized fluid forces are presented in Sec. 5.2 of Ref. �12� and
their stability analysis is presented for two neighboring tubes un-
der assumption that only two certain cross-stiffness coefficients
are involved in dynamic instability. Thus, it is the case of a TDOF
flutter indeed and the equations of motion of tube j along the flow
and tube j+1 perpendicular to flow are

ẍj + 2�ẋj + 	2xj = ��Cx/m�yj+1 and

ÿ j+1 + 2�ẏ j+1 + 	2yj+1 = − ��Kx/m�xj �26�

Here, �=�U2 /2 and 	=
k /m, where U is flow speed, m is mass
of tube, and k is its stiffness; the latter is assumed in this paper to
be the same for both directions x and y as well as the structural
damping factor � �stability analysis for this special case of Eqs.
�5-14� and �5-15� of Ref. �12� had been presented in Ref. �11��; Cx
and Ky are fluidelastic coefficients, which are involved in the
TDOF flutter that leads to whirling motion that is observed in tests
�see references in Ref. �12��, whereas two other fluidelastic coef-
ficients Cy and Kx are neglected.

Assuming now that flow speed U is subject to �relatively slow�
temporal random variations, we may apply the basic procedure for
stochastic analysis. Introducing complex coordinate z=xj +yj+1,
we may replace two real equations �26� by a single complex equa-
tion

z̈ + 2�ż + 	2z + i��2�z + �z̄� = 0

where Ky + Cx = 2�2, Ky − Cx = 2��2 �27�
To apply KB averaging for the case of lightly damped system,

we introduce change of variables

z = z+ exp�i	t� + z− exp�− i	t� ,

ż = i	�z+ exp�i	t� − z− exp�− i	t�� �28�

�which is seen to be similar to Eq. �19� but without cofactor i in
the expression for z; this transformation yields real final ODEs for
two new state variables�. Similarly to derivation in Sec. 4.1, rela-
tion �28� is resolved for z+�t� and z−�t� and the resulting expres-
sions are differentiated. Subsequent application of the KB averag-
ing yields then

ż+ = − �� + ��2/2	�z+ − ����2/2	�z−

ż− = ����2/2	�z+ + �− � + ��2/2	�z− �29�

Condition for neutral stability of this system, which is that of
vanishing determinant of the RHS of this ODE set, yields the
corresponding critical value of � as denoted by a star subscript as
follows:

�
*

= 2�	/��2
1 − �2� �30�

This condition for neutral stability clearly coincides with the exact
one as obtained in Ref. �12� by direct application of the Routh–
Hurwitz criterion to the original equation �26�.

Direct numerical integration of the ODEs �29� may now be
applied for the case where parabolic approximation is used for
zero-mean part of ��t�. It may happen, however, that data on
fluidelastic coefficients Cx and Ky are available only from stability
tests. As can be seen from formula �30�, critical flow speed de-
pends only on product of these coefficients �these kinds of data
are presented in Ref. �11��. As long as individual values of Cx and
Ky are not known, it would be reasonable to consider “the worst
case”—one with smallest critical speed. As can be seen from Eq.
�30�, it is the case where Cx=Ky or �=0. Moreover, in this special
case, two ODEs �29� are uncoupled so that we may consider only
the second of these, which is prone to short-term instability and
apply analytical solution of Sec. 2.

Fig. 3 Theoretical PDF of scaled peak vertical response of a
rigid body in a 2D galloping
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5 Conclusions
Dynamic systems have been considered with random temporal

variations in a parameter of nonconservative force�s�, or bifurca-
tion parameter. While mean or expected value of this parameter
lies within the stability domain of the corresponding “nominal”
system, its random variations may occasionally bring the system
into the domain of dynamic instability for brief periods. As long
as it may be impossible or impractical to preclude completely the
corresponding response outbreaks in designing such “marginally
unstable” systems, this random response should be studied to
evaluate the system’s reliability. This response may be of an in-
termittent nature just because of the way it is generated, with
alternating relatively long periods of zero or almost-zero response
and relatively brief and rare violent outbreaks.

A procedure for analysis of response of this kind has been de-
scribed in this paper for the case where expected frequency of the
�bifurcation� parameter variations is small compared with the sys-
tem’s lowest natural frequency. It is based on parabolic approxi-
mation of the variation process in the vicinities of its peaks, or the
so-called Slepian model. The approximation reduces the problem
of random vibration to one of deterministic transient vibration
with random initial conditions; in this way, probabilistic analysis
of the intermittent response is reduced to that of the bifurcation
parameter variation process. Thus, the PDF of the response peaks
may be predicted, which is important for evaluating damage ac-
cumulation in low-cycle fatigue; first-passage analysis for re-
sponse is also reduced to that for the bifurcation parameter.

The resulting ODE�s� of transient motion during the short-term
or temporary dynamic instability has�ve� been reduced by the KB
averaging over “fast” time for the important case of highly
damped system. Cases of single-mode instability of the negative-
damping type and of two-mode flutter-type instability have been
considered. Analytical solutions for the former case have been
obtained for transient response outbreak and thus for PDF of re-

sponse peaks. This analysis has been extended to certain TDOF
systems with special symmetry properties. General TDOF systems
have been studied using numerical solution for the transient re-
sponse problem. Specific examples of applications considered in-
clude rotating shafts with temporal variations in apparent “rotat-
ing” damping and 1D or 2D galloping of a rigid body in a fluid
flow with randomly varying speed.
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Introduction
Scale effects have received a strong interest in the past few

decades. With the term scale effects, both the variation of me-
chanical parameters and the variation of failure mode by varying
the characteristic structural dimension �ductile to brittle transition�
are considered. Very interesting results have been achieved by the
second author in defining brittleness numbers, which easily deter-
mine the failure behavior: the static �1,2�, the energetic �3–5�, and
the composite �6� brittleness number. In tension, the phenomenon
has been deeply discussed and important conclusions have been
set. In particular, the variation of tensile strength was considered
with the formulation of different laws. Bažant �7� defined the so-
called size effect law in the hypothesis of the presence of an initial
crack of length proportional to the specimen size. This law has
been often used in the literature. Successively, Carpinteri �8,9� and
Carpinteri et al. �10� proposed the multifractal scaling law, valid
for initially integer specimens and components. On the other
hand, the compression failure is more complex and the related
size effects are less understood.

The brittle failure in compression has been widely studied over
the past decades. The phenomenon of axial splitting in the absence
of confinement, as well as the related phenomena of exfoliation or
sheet fracture, has been analyzed by Holzhausen and Johnson
�11�, by Nemat-Nasser and Horii �12�, and by Ashby and Hallam
�13�. Horii and Nemat-Nasser �14� have modeled the transition
from brittle failure to ductile flow under very high confining pres-
sures, by considering possible zone of plastically deformed mate-
rials at high shear-stress region around preexisting flaws. An in-
teresting overview of brittle failure in compression can be found
in Ref. �15�.

Bažant and Xiang �16� proposed a simplified model of com-
pression failure of quasibrittle columns, with the propagation of a
band of axial splitting cracks in a direction parallel or inclined
with respect to the column axis, predicting in that case the size
effect on nominal strength. Rossi et al. �17�, in order to explore
the possibilities for the numerical modeling of concrete behavior,
considered the failure of concrete in compression as the sequence
of two-stage crack mechanisms. At the first stage, cracks paral-

lelly open to the direction of loading, leading to the formation of
slender columns in the material. At the second stage, these col-
umns bend because of eccentric compressive loading and an ob-
lique cracking mechanism starts at a scale smaller than the one of
the columns. A softening branch is observed and, as a conse-
quence, the multiscale heterogeneity of the material is proved to
affect also the postpeak behavior. Markeset and Hillerborg �18�
proposed the compressive damage zone model based on the hy-
pothesis of compression failure mode as a combination of distrib-
uted axial splitting and localized deformation within a zone of
limited length. Slate et al. �19� observed how the tensile mecha-
nism is the most relevant crack mechanism controlling failure of
concrete in uniaxial compression. In normal-strength concretes,
they found highly irregular failure surfaces including a large
amount of bond failure. In high-strength concretes, instead, the
failure mode is that typical of nearly homogeneous materials in
which failure occurs suddenly in a vertical, nearly flat plane pass-
ing through aggregates and mortar. This result can be easily ex-
plained by the model by Carpinteri and Chiaia �20�, in which the
fractal dimension of the fracture surface is presented as a function
of aggregates and mortar characteristics.

The variation of the compressive strength with size and height-
diameter �or slenderness� ratio is relevant when the rigid test ma-
chine platens are in direct contact with the concrete specimen, the
lateral deformation of concrete being restrained at the specimen
ends. In this context, a wide investigation has been carried out by
Carpinteri et al. �21�. When, instead, the friction at the specimen
ends is reduced, the strength variation is less evident.

Van Vliet and van Mier �22�, using improved experimental
techniques of axial displacement control and lubricated end plat-
ens as well as variable height to diameter ratios, observed that
postpeak data from uniaxial compression experiments on plain
concrete suggest a stress-displacement rather than a stress-strain
relation. To obtain a unique empirical stress-displacement rela-
tionship, they suggested a functional dependence of the axial
stress on the axial displacement, which turns out to be more or
less insensitive to the height of the specimen.

An experimental investigation on geometrically similar cylin-
drical concrete specimens, obtained by a unique concrete block in
compression over a very large scale range �1:19�, will be briefly
reported �23� and the obtained scale effects will be herein dis-
cussed. It will be shown how, avoiding friction, the strength is
almost independent of specimen dimension while strong varia-
tions are observed for dissipated energy density. This phenomenon
can be interpreted by considering the fragmentation and the com-
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minution theories. In this field, fractal geometry represents a very
helpful tool to explain such a phenomenon. Turcotte �24� pro-
posed a very interesting fractal approach for fragmentation. He
affirmed that, if the fragments are produced over a wide range of
sizes and if natural scales are not associated with the fragmented
material, a fractal distribution of number versus size would seem
to be expected.

In this context, a theoretical explanation, recently proposed by
Carpinteri and Pugno �25,26�, for the scale effects on the dissi-
pated energy density in compression, is discussed and applied to
the experimental results. From the theory, it can be evidenced
how, in the scale range of the tested specimens, the energy
dissipation occurs in a subdomain with a noninteger physical
dimension.

In the last section, a scale-independent constitutive law in com-
pression is put forward, which permits to define a unique relation-
ship for softening in concrete. This goal is achieved by defining a
fractal strain �or dilatation� whose fractal dimension is related to
the subdomain in which energy dissipation occurs.

Experimental Evidence
In this section, the experimental tests performed at the Politec-

nico di Torino are briefly presented. As pointed out in the Intro-
duction, all the cylinder were obtained on drilling from a unique
concrete block with sizes 800�500�200 mm3. The microcon-
crete used for the specimens is characterized by a maximum ag-
gregate size of 4 mm, with a compression strength, obtained by
cubes �150�150�150 mm3� after 28 days, equal to 33 N /mm2.
The water-cement ratio was equal to 0.65.

Five different diameters were considered in relation to the dis-
posable drilling core bits in a scale range of 1:19. The specimens
were cylinders with a height-diameter ratio h /d=1 and d chosen
as characteristic dimension equal to 10 mm, 23 mm, 45 mm,
100 mm, 190 mm, respectively. Six specimens have been tested
for d=10 mm, 23 mm, and 45 mm and four specimens for d
=100 mm and 190 mm. The geometries of the tested specimens
are presented in Fig. 1�a�, while an overview of all the specimen

sizes is reported in Fig. 1�b�. Each specimen is individuated by a
label formed by a letter C �compression� and by two numbers. The
first number is related to the specimen dimension �1 for d
=10 mm, 2 for d=19 mm, and so on� as reported in Fig. 1. The
second number indicates the specimen.

For the three smallest sizes, the tests were carried out on a
uniaxial compression machine with a capacity of 100 kN. The
machine was controlled by a closed-loop servo-hydraulic system.
All compression tests with this machine have been performed un-
der displacement control, by imposing a constant rate of the dis-
placement of the upper loading platen.

For the two remaining specimen sizes, d=100 mm �C4� and
190 mm �C5�, a manual load controlled uniaxial compression ma-
chine with a capacity of 3000 kN was used. The choice of this
kind of machine was necessary as the peak load for these speci-
mens exceeded the maximum load of the other displacement con-
trolled machines available in the laboratory. In addition, the height
of the specimens did not permit the control of the postpeak load-
displacement diagram, due to the more brittle structural behavior,
unless a very sophisticated control system could be available, as
performed by van Vliet and van Mier �22�.

For these two larger sizes, loading cycles around the peak load
were performed in order to capture the postpeak branch and to
plot the entire curve. Unfortunately, as should have been easy to
predict, only for one specimen �C44�, we were able to capture the
softening part.

The system adopted in the present compression tests for reduc-
ing friction at the ends of the specimens comes out from the
analysis of the RILEM Technical Committee 148 SSC results
�27�. These results suggested us to use two Teflon layers of
150 �m thickness with oil in between and a specimen slenderness
equal to one.

The experimental load versus displacement diagrams can be
found in Ref. �23�. Only one stress-deformation curve for each of
the four sizes of concrete loaded in uniaxial compression is plot-
ted in Fig. 2. These curves, as the load versus displacement ones,
show a steadily initial increasing slope, due to the lower stiffness

d

d= 190 mm

d

d= 100 mm

d

d= 45 mm

d

d= 10 mm
d

d= 23 mm

1 2 3 4 5

Scale range = 1:19

(a)

(b)

Fig. 1 „a… Geometries of the five different concrete specimens; „b… overall view of the five
specimen sizes
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at the beginning of the test, i.e., to the adjustment of the loading
platens to the specimen surfaces and to the compressibility of the
Teflon interlayers.

After this initial part, the stress-strain path is nearly linear and
this linear part is as more pronounced as larger the specimen is
�Fig. 2�. The smaller the specimen, the more pronounced prepeak
nonlinearities are. After the peak stress, a gradually descending
branch has been detected. As it can be deduced from Fig. 2, the
stress-strain curve for different specimens are almost the same in
the prepeak regime, but, beyond the peak, the slope of the de-
scending branch decreases with decreasing specimen height. Van
Mier �28� plotted the normalized stress versus postpeak displace-
ment diagrams, in which the displacements are calculated as

� = �� − �peak�h �1�
and obtained nearly overlapping curves. He concluded that, as the
same displacement is needed to fracture the specimens, the post-
peak deformation must be localized in a small zone, and cannot be
interpreted as an average strain. This fracture localization of con-
crete uniaxial compression implies that strain cannot be used as
state variable in constitutive laws. The dimensionless stress versus
postpeak deformation diagrams for four cylindrical specimen
sizes are plotted in Fig. 3. It can be effectively evidenced that
these curves are close to each other, even if different initial slopes,
indicating an increase of brittleness with size, are present.

The values of the peak stresses, which are commonly called
compressive strength, are reported in Fig. 4 by varying the speci-

men sizes. It can be noticed how, reducing friction, a marked size
effect does not come out, as instead can be evidenced in tension
�10,29,30� or in compression when localization is present �21�.
The same results were obtained experimentally by the RILEM
Committee 148 �27� and numerically by Carpinteri et al. �31,32�
by simulations with a boundary element approach. The scatter in
the results is not pronounced and even for the smallest size the
values are comparable to the compressive strength of standard
cubes. This permits to affirm that, if friction is avoided or drasti-
cally reduced, the compressive strength of an existing concrete
structure can be evaluated using very small drilling core
specimens.

The dissipated energy density can be evaluated by considering
the area under the P−� curve divided by the volume of the speci-
men. This is equivalent to consider the area under the stress-strain
curve. The values of the dissipated energy density are plotted
versus the characteristic specimen size in Fig. 9 in bilogarithmic
plane. They undergo severe scale effects. The trend is a decrease
by increasing the specimen dimension. This interesting result is
discussed in the next section and a theoretical explanation is pre-
sented, based on a fractal hypothesis for the fragment size distri-
bution generated during the compression test.

Fractal Explanation of Size Effect on Dissipated Energy
Density in Compression

Monofractal Approach. The performed compression tests
have shown an evident decrease of dissipated energy density with
increasing specimen dimension �Fig. 9�. This interesting phenom-
enon can be interpreted by considering the fragmentation and the
comminution theories. In this field, fractal geometry represents a
very helpful tool. Fragmentation involves initiation and propaga-
tion of fractures. Fracture propagation is a highly nonlinear pro-
cess requiring complex models even for the simplest configura-
tion. Fragmentation involves the interaction between fractures
over a wide range of scales. If fragments are produced over a wide
range of sizes and if natural scales are not associated with the
fragmented material, fractal distribution of number versus size
would seem to be expected. The statistical number-size distribu-
tion for a large number of objects can be fractal �24,33�.

Let us consider a concrete specimen, which undergoes a com-
pression test. In the postpeak softening regime, the specimen is
characterized by the generation of a large number of fragments.
After fragmentation, the number of fragments N with a character-
istic linear dimension greater than r should satisfy the relation

N =
B

rD �2�

where B is a constant of proportionality, and D is the fractal
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Fig. 2 Stress-strain curves for four different cylindrical speci-
men sizes
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dimension.
In order to describe the mechanical meaning of the fractal ex-

ponent D, in Fig. 5 some examples of discrete fragmentation
model are presented, where fragmentation is a scale-invariant pro-
cess that leads to a fractal distribution of chip sizes. We consider
a fractal cube and use it as the basis for a fragmentation model.
The fragmentation is such that some blocks are retained at each
scale but others are fragmented. In order to determine D, Eq. �2�
can be written as

D =
log�Nn+1/Nn�
log�rn/rn+1�

�3�

and then we can find for the three cases D=log 25 / log 3=2.93
�Fig. 5�a��, D=log 19 / log 3=2.68 �Fig. 5�b��, and D
=log 9 / log 3=2.00 �Figs. 5�c� and 5�d��, respectively. This is the
fractal distribution of a discrete set. The cumulative number of
blocks larger than a specified size for the three highest orders are
N1c=2 for r1=h /3, N2c=52 for r2=h /9, and N3c=1302 for r3
=h /27, obtaining a value D=2.95 for the first example; N1c=8,
N2c=160, N3c=3048, and D=2.70 for the second example; N1c
=18, N2c=180, N3c=1638, and D=2.05 for the last two �Fig. 6�.
The fractal dimensions for the discrete set and for the cumulative
statistics are nearly equal.

Considering W as the global dissipated energy measured by the
experimental setup, G as the elastic energy release rate or the
specific energy necessary to generate the unit area of fracture,
which is by hypothesis invariant with respect to the scale of ob-
servation, we have

W = GA and then G =
W

A
=

SV

A
=

Sl3

l2 = Sl �4�

If we consider a sequence of scale of observation, we have

G = S1l1 = . . . = Sn−1ln−1 = Snln = Sn+1ln+1 = . . . = S�l� �5�

where the first scale of observation could be the macroscopic one,
with S1l1=Sl, l being the characteristic linear dimension of the
specimen, and the asymptotic scale of observation could be the

(a) (b) (c) (d)

Fig. 5 Physical meaning of exponent D; „a… at each step, only one cube is
retained, while all the others are divided into 27 equalsized cubes with rn

= 1
3rn−1 „D=2.93…, very close to a volumetric fragmentation; „b… at each step, the

eight angular cubes are retained, while all the others 19 are divided into 27
equal-sized cubes with rn= 1

3rn−1 „D=2.70…; „c… and „d… at each step, the nine
cubes are divided into 27 equal-sized cubes with rn= 1

3rn−1, while the others 18
are retained „D=2.00…, showing a localization of the dissipation energy
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Fig. 6 Cumulative statistics for the proposed fragmentation
models
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microscopic one, with S�l�=G
F
*l*, l* being the measure of the

fractal set representing the fragmented configuration. From the
equality between the extreme members, we can write

S = G
F
*� l*

l
� or S = G

F
*� l1−d�

l
� �6�

where 0�d��1 is the decrement of the topological dimension
due to the nonhomogeneous fragmentation. Taking the logarithms
of both members of Eq. �6�, we obtain

log S = log G
F
* − d� log l �7�

where d�=3−D can be considered as the decrement of the topo-
logical dimension of the set in which energy dissipation occurs.
Equation �7� represents a straight line with slope �D−3� in the
log S versus log l plane �Fig. 7�. If D=2, the slope is −1, as well
as D=3 implies a vanishing slope. For D=2 �localization� d�=1;
for D=3 �volumetric dissipation� d�=0.

The two extreme cases are D=2, surface theory �34�, when the
dissipation really occurs on a surface �W�V2/3�, and by D=3,
volume theory �35�, when the dissipation occurs in a volume �W
�V�. In this case, G

F
* presents the following physical dimensions:

�G
F
*� =

�F��L�−1

�L�D−2 = �F��L�1−D �8�

For D=2→ �G
F
*�= �F��L�−1, which is the canonical dimension for

fracture energy, while for D=3→ �G
F
*�= �F��L�−2, which is the

physical dimension of stress. The experimental cases of fragmen-

tation are usually intermediate �D�2.5� �24�, as well as the size
distribution for concrete aggregates due to Fuller �36�.

The fractal nature of the fragments generated by the compres-
sive test emerges very clearly at the size scale of the specimens
�37�. Momber �38� applied fragmentation theory to the study of
compression and analyzed the fragments, determining a fractal
exponent D close to 2. On the other hand, the property of self-
similarity is very likely to vanish or change at higher or lower
scales, owing to the limited characteristic of the particle size
curve. The price to pay for obtaining a constant value is the loss of
the classical physical dimensions for dissipated energy density. It
is obviously very difficult to use these results in a structural analy-
sis, a non-Euclidean �or fractal� mechanics being not yet avail-
able, even if very important steps have been moved forward by
Carpinteri et al. �39�.

Multifractal Approach. The monofractal hypothesis provides
a dissipated energy density S=W /V→0 for l→�. Due to the
limited validity of the self-similarity property, this is of course a
physical nonsense. The same trend has been obtained in traction
�9,40�, where the monofractal hypothesis was considered for
cross-sectional ligaments. In that case, the geometrical multifrac-
tality of the cross-sectional material ligament �8,10� permitted to
determine the multifractal scaling law for tensile strength, as well
as for fracture energy �20,41� whenever the geometrical multifrac-
tality for fracture surface is assumed. The topological concept of
geometrical multifractality, which can be also considered as an
extension of the concept of self-affinity, may explain the inconsis-
tencies shown in the preceding section. A self-affine fractal �42� is
a fractal showing a different scaling law with respect to self-
similarity, in the sense that a �statistically� similar morphology can
be obtained only if the lengths are rescaled by direction-dependent
factors. Such a fractal set can be identified by two different values
of the fractal dimension: a local fractal dimension, in the limit of
scales tending to zero, strictly equal to the Hausdorff topological
dimension, and a global fractal dimension, corresponding to the
largest scales, equal to the �integer� topological dimension.

On the other hand, as is shown in Fig. 8, it appears more con-
sistent to deal with a continuous variation of the fractal dimension
against the observation scale length �i.e., geometrical multifracta-
lity�, than to consider only two limit values of the fractal
dimension.

If a cube is fragmented in a recursive process into eight cubes
�of 1

2 linear dimension�, at each step with probability f , the vol-
ume of each fragment and the number of fragments �cubes� at the
nth step will be

log S

log l

log G*

F

1

dω

Fig. 7 Size effect on dissipated energy density in
compression

X = log

Q

Homogeneous regime
Fractal regime

1

1

l
log chl

log S

Y = log S

Fig. 8 Multifractal scaling law for volumetric energy dissipation versus size
scale
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Vn =
1

8nV0 �9�

Nn = �8f�nN0 �10�

where V0 is the volume of the N0 original cubes. Taking the natu-
ral logarithms of both Eqs. �9� and �10� and eliminating n from
them:

Nn

N0
= �Vn

V0
�−ln 8f/ln 8

�11�

If a fragmented cube produces at each step a generic integer num-
ber V0 /V1 of cubes, and noting that Vn=rn

3, Eq. �11� can be gen-
eralized as

Nn

N0
= � rn

r0
�−3 ln�V0/V1�f/ln�V0/V1�

�12�

From the comparison with the well-known definition of fractal
distribution

Nn =
B

rn
D �13�

it is possible to write

D = 3

ln
V0

V1
f

ln
V0

V1

�14�

From Eq. �14�, we deduce the probability of fragmentation f �in
any case greater than V1 /V0�:

f = � r1

r0
�3−D

�15�

In other words, assuming a constant probability f , we can de-
scribe a self-similar process and obtain a constant fractal exponent
D. Carpinteri and Pugno �43� proposed the existence of a material
quantum as a lower limit for chip size. This quantum is strictly
related to the type of concrete considered. As affirmed by Slate
et al. �19� for normal-strength concrete, it can be the aggregate,
the fractures being irregular and only in the mortar or the inter-
faces mortar aggregate. For high-strength concrete, the quantum
can be the sand grain, the fracture being more flat. This different
quantum size justifes the translation of the law in Fig. 10. The
probability of fragmentation should increase with fragment size
and the corresponding exponent D should also increase according
to Eq. �14�. A nonconstant exponent D in Eq. �13� permits to

describe a multifractal law �9�. The rupture of self-similarity in the
fragmentation process should be due to the existence of the ma-
terial quantum and represents the physical reason of the multifrac-
tal character. Carpinteri and Pugno �25,26,43� set that

Dmin = D�r = rmin� � 2, Dmax = D�r → �� � 3 �16�
as well as the corresponding probabilities are �Eq. �15��

fmin = f�r = rmin� =
r1

r0
, fmax = f�r → �� = 1 �17�

The simplest expression for f satisfying conditions �17� is

f�r� = � r1

r0
�rmin/r

�18�

so that the following variation of D was obtained �25,26,43�:

D�r� = 3 −
rmin

r
�19�

allowing D�r�→2 for r→rmin, whereas D�r�→3 for r→�.
According to the previous considerations, the following multi-

fractal scaling law for dissipated energy density �Fig. 8� can be
proposed �8,10,30�:

S = S��1 +
lch

l
� �20�

where the two material constants S� and lch can be obtained from
fitting the experimental results. The physical requirements previ-
ously exposed are thus respected

lim
l→+�

S��1 +
lch

l
� = S� �21�
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lim
l→0+

S��1 +
lch

l
� = + � �22�

In the bilogarithmic diagram shown in Fig. 8 �X=log l ;Y
=log S�, the analytical expression becomes

Y�X� = log S� + log�1 +
lch

10X� �23�

The asymptotes in the bilogarithmic plot present peculiar physical
meanings �Fig. 8�. The horizontal asymptote, corresponding to
the larger sizes �homogeneous regime�, presents the following
expression:

H1�X� = log S� �24�
while the oblique asymptote, which corresponds to the macro-
scopic dimension l tending to zero �i.e., X→−�� and governs the
disordered or fractal regime, presents the following expression:

H2�X� = − X + log �lch �25�

Point Q is the intersection of the two asymptotes �Fig. 8� and its
horizontal coordinate is given by

XQ = log lch �26�

where lch is a characteristic length. Point Q ideally separates the
disordered regime, where fragmentation is not homogeneous,
from the ordered �homogeneous� regime. The microstructural
characteristic size lch, in the case of normal-strength concrete,
could be proportional to the maximum aggregate size dmax:

lch = 	dmax �27�
It is reasonable to suppose that for finer grained brittle materials

�rocks, high-strength concrete�, this value should be considerably
smaller than in the case of normal-strength concrete, thus provid-
ing the curve to horizontally shift to the left in the bilogarithmic
diagram �Fig. 10�. Given a particular size l1, for example, a
normal-strength concrete specimen could behave according to the
fractal disordered regime, whereas a rock or high-strength con-
crete specimen of the same size could be set in the �nearly� hori-
zontal branch �Fig. 10�, thus showing a homogeneous macro-
scopic behavior, characterized by a large and ordered distribution
of microfractures.

The process shows two asymptotes. At the smallest scales, the
dissipation occurs over a domain very close to a surface �D=2�,
whereas at the largest scales the dissipation occurs over a domain
close to a volume �D=3�.

Conclusions
The uniaxial compression tests performed under displacement

control on drilled cylindrical specimens obtained by a unique con-
crete block over a very large scale range �1:19� have confirmed as
that scale effect on compressive strength is not as evident as in
traction. The experimental results have instead manifested a
strong scale effect on dissipated energy density, showing a sharp
decrease of that quantity by increasing specimen size.

The hypothesis of energy dissipation in a subdomain with
physical dimension between 2 and 3 can be effective to justify
such a phenomenon. It can be observed how, when energy dissi-
pation occurs in the volume �D=3�, no scale effects are present,
whereas when energy dissipation occurs over an area �D=2�, the
scale effects are characterized in the bilogarithmic diagram log S
versus log l by a linear law with slope equal to −1. By fitting the
experimental values, we obtain an intermediate case, and a renor-
malized value for dissipated energy density, invariant with scale,
can be obtained. This scale-invariant value is characterized by
noninteger physical dimensions. This hypothesis works very well
in the size range of the tested specimens.

In order to extend the trend of the dissipated energy density to
all the size scales, a multifractal law has been proposed, from

which comes out how at small scales the failure is dominated by a
fragmentation process �D=2� with severe scale effect, while at
large scales the energy dissipation occurs in the volume �D=3�
and the related scale effect vanishes.

A renormalization procedure for strain �or dilation� has been
eventually proposed in order to obtain a scale-invariant stress ver-
sus renormalized strain diagram.
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Parametric Instability of an
Axially Moving Belt Subjected to
Multifrequency Excitations:
Experiments and Analytical
Validation
This paper experimentally investigates the parametric instability of an industrial axially
moving belt subjected to multifrequency excitation. Based on the equations of motion, an
analytical perturbation analysis is achieved to identify instabilities. The second part
deals with an experimental setup that subjects a moving belt to multifrequency paramet-
ric excitation. A data acquisition technique using optical encoders and based on the
angular sampling method is used with success for the first time on a nonsynchronous belt
transmission. Transmission error between pulleys, pulley/belt slip, and tension fluctuation
are deduced from pulley rotation angle measurements. Experimental results validate the
theoretical analysis. Of particular note is that the instability regions are shifted to lower
frequencies than the classical ones due to the multifrequency excitation. This experiment
also demonstrates nonuniform belt characteristics (longitudinal stiffness and friction co-
efficient) along the belt length that are unexpected sources of excitation. These variations
are shown to be sources of parametric instability. �DOI: 10.1115/1.2910891�

Keywords: automotive belt, parametric instabilities, multifrequency excitation, experi-
mental investigation, angular sampling

1 Introduction
Instead of classical V belts, serpentine drives are used in front

end accessory drives �FEADs�. They use flat and multiribbed belts
running over multiple accessory pulleys, leading to simplified as-
sembly and replacement, longer belt life, and compactness �1�.
Numerous mechanical phenomena occur in this application: rota-
tional vibrations �2�, hysteretic behavior of belt tensioner �3�, non-
linear transverse vibration due to the existence of pulley eccen-
tricity �4�, dry friction tensioner behavior �5�, or parametric
excitation.

Commonly known under the category of axially moving media,
belt spans are subjected to parametric excitation from their oper-
ating environment as studied by Zhang �6�. A theoretical nonlinear
dynamic analysis is also analyzed by Mockenstrum et al. �7,8�.
However, only Pellicano et al. �9,10� present a coupled theoretical
and experimental investigation, where the excitation comes from
pulley eccentricity, which causes simultaneous direct and para-
metric excitation.

Widely used in automotive engines, belt spans experience mul-
tifrequency excitation caused by engine firing and accessory vari-
able torques �11�. Belt parametric instability occurs as transverse
vibration in these applications, where the problems are noise and
belt fatigue.

This paper builds on a previous work of Parker and Lin �12� as
an experimental illustration and model validation. First, it deals
with the general moving belt model subjected to multifrequency
tension and speed fluctuations. Then a specific test bench is pre-
sented, which produce this kind of excitation. Data acquisition is
based on the principle of pulse timing method and leads to angular

sampling for frequency analysis �13�. This method is applied here
for the first time on a nondiscrete geometry. The theoretical results
from perturbation analysis are compared to the experimental ones.
An unexpected source of parametric excitation is also highlighted.

2 Mathematical Model
A mathematical model of an axially moving beam subjected to

multifrequency tension and speed parametric excitation is used to
establish the parametric instability region transition curves. The
equation of motion for transverse vibration of a beam of length L
moving with time dependent transport velocity c�T� is governed
by �14�

�A�V,TT + c,TV,X + 2cV,TX + c2V,XX� − �Ps + Pd�T��V,XX + EIV,XXXX

= 0 �1�

where �A is the mass per unit length, EI the bending stiffness, V
the transverse displacement, Ps the mean belt tension, Pd�T� the
dynamic tension, and T and X the independent time and spatial
variables. The dynamic tension results from longitudinal motion
of the endpoints as a result of pulley oscillations and quasistatic
midplane stretching from transverse deflection, and is given by

Pd�T� =
EA

L �U�L,T� − U�0,T� +
1

2�
0

L

V,X
2 dX� �2�

EA is the longitudinal stiffness modulus and U the longitudinal
displacement. With the dimensionless parameters,

x,v,u =
X,V,U

L
, t = T� Ps

�AL2 , � = c	� Ps

�A
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� =
EA

Ps
, � =

EI

PsL
2 , �i =��AL2

Ps
�̃i �3�

Equation �1� becomes

v,tt + 2�v,tx + �,tv,x − �1 − �2�v,xx + �v,xxxx

− ��u�1,t� − u�0,t� +
1

2�
0

1

v,x
2 dx�v,xx = 0 �4�

The belt tension and speed fluctuations are, respectively,

��u�1,t� − u�0,t�� = 

i=1

k

�i cos��it + �i� �5�

� = �0 + 

i=1

k�

�i� cos��i�t + �i�� �6�

where �i=EAui / Ps�1 represents the ratio of the ith spectral com-
ponent of the dynamic tension fluctuation to the mean span ten-
sion.

As investigated in Ref. �12�, the boundaries of the instability
regions can be obtained on the basis of Floquet theory and pertur-
bation analysis.

Linearizing Eq. �4� and writing in state-space form gives �12�

AWt + BW + 

i=1

k�

�i��sin��i�t + �i��C + �i� cos��i�t + �i��D�W

− 

i=1

k

�i cos��it + �i�EW + 


i=1

k�

�i� sin��i�t + �i���2

EW = 0

�7�

where

A = �1 0

0 − �1 − �0
2�

�2

�x2 + 	
�4

�x4 � ,

B = � 2�0
�

�x
− �1 − �0

2�
�2

�x2 + 	
�4

�x4

�1 − �0
2�

�2

�x2 − 	
�4

�x4 0 �
C = �2

�

�x
2�0

�2

�x2

0 0
�, D = �0

�

�x

0 0
�, E = �0

�2

�x2

0 0
� ,

W = �v,t

v
� �8�

The inner product in the state space is �W ,V�=�0
1WTV̄dx, where

overbar denotes the complex conjugate and superscript T denotes
the transpose. The Galerkin basis consists of the state-space eigen-
functions of the nonparametrically excited moving string ��=0�
system �15�


n = � j�n�n

�n
� = �
n�n

�n
� �9�

where �n are the complex eigenfunctions of Eq. �4� and �n the
natural frequencies

�n =
1

n��1 − �0
2
ejn��0x sin�n�x�, 
n = jn��1 − �0

2� �10�

Let us define Enm= �E
n ,
m� and En̄m= �E
̄n ,
m�, with similar
relations for the C and D operators.

Using perturbation analysis to consider speed and tension fluc-
tuations, primary instability occurs when

�l = �l� = 2�n � ���l��− jCn̄n + 2�nDn̄n��2 + ��l�En̄n��2 − �En̄n�2

��− 

i=1,i�l

k

�i
2 2�n

�i
2 − 4�n

2 +
�l

2

8�n
� − �− jCn̄n + 2�nDn̄n�2

��− 

i=1,i�l

k�

�i�
2 2�n

�i�
2 − 4�n

2 +
�l

2

8�n
� + 


i=1

k� 
�i�

2
�2

�Enn� �11�

and secondary instability occurs when

�l = �l� = �n ��
 �l
2

�n
Im�Enn��En̄n��2
�l�

2

�n
Im�− jCnn + �nDnn��− jCn̄n + �nDn̄n��2

− �En̄n�2�− 

i=1,i�l

k

�i
2 �n

�i
2 − 4�n

2 +
�l

2

3�n
� − �− jCn̄n

+ �nDn̄n�2�− 

i=1,i�l

k�

�i�
2 �n

�i�
2 − 4�n

2 +
�l

2

3�n
� + 


i=1

k� 
�i�

2
�2

�Enn� �12�

3 Experimental Setup

In industrial applications, excitation sources are not at a single
frequency, especially in an automotive engine. Engine firing and
driven accessories cause multifrequency speed and tension fluc-
tuations. Furthermore, practical belt speeds are such that they im-
pact the dynamics and must be included. The following experi-
ment examines parametric instabilities from this kind of excitation
in a moving belt system.

3.1 Belt Drive Description. The studied transmission con-
sists of four pulleys linked together by an automotive multiribbed
belt, as shown in Fig. 1. The input shaft speed �from
0 rpm to 2000 rpm� is controlled by a 60 kW electric motor. The

driven shaft is connected to a hydraulic pump. The output pressure
of the fluid is controlled to apply a mean torque on the driven
pulley. Due to its design, however, the pump generates torque
fluctuations of order 2 �i.e., 2 pulses/rev� around the mean value.
These fluctuations cause tension variations that parametrically ex-
cite the moving belt.

Due to the rotation direction, the upper span is tight and the
lower one is slack. As these two spans have approximately the
same length, the instability will appear in the slack span for the
lowest excitation frequencies. Figure 2 shows an example of
transverse vibration of the lower span.

3.2 Measurement Devices. Angular positions are measured
by optical encoders mounted on Pulleys 1, 2, and 3 �respectively,
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2048 pulses/rev, 2048 pulses/rev, and 2500 pulses/rev�. Belt ten-
sion is measured by a piezoelectric sensor on the Pulley 3 support
and belt lateral vibration by a laser displacement sensor �0.02 m
range, 10 �m dynamic resolution�.

The data acquisition system is custom made with a PXI frame
including classical data acquisition boards and a four-channel
counterboard permitting the use of the pulse timing method. Each
optical encoder delivers a square signal �TTL� as it rotates. Be-
tween two rising edges of this signal, a counter records the num-
ber of pulses given by a high frequency clock �80 MHz�, see Fig.
3. For each encoder, it is therefore possible to build a time vector
that contains the times of occurence of the TTL signal’s rising
edges. Hence, the total rotation angle of each shaft is determined
and instantaneous rotation speed and acceleration are deduced. In
this application, measurement is triggered on the reference en-
coder mounted on the driving shaft and analog signals are ac-
quired at each instant of the reference encoder’s rising edge. Ob-

viously, when an analog signal is sampled in the angular domain,
the speed conditions are taken into account in order to set the
cutoff frequency of antialiasing filters. An important characteristic
of this measurement principle is to separate resolution and preci-
sion. Resolution is given by the number of pulses/rev, and the
theoretical angular precision is proportional to the ratio between
rotation speed and counterclock frequency. The grating quality of
the optical encoder disk, as well as the electronic signal condition-
ing and processing, may also affect the practical accuracy.

3.3 Angular Sampling Benefits. Compared to classical ac-
quisition �16�, data are resampled based on the angular rotation of
a chosen encoder, which is not necessarily the reference one. It
consists in calculating the angular rotations of the other encoders
at the times corresponding to the rising edges of the sampling
encoder. Hence, if angular sampling is performed on encoder i,
the angular positions of each of the slave encoders are computed
from linear interpolation at the times corresponding to the encoder
i rising edge locations, see Fig. 4�a�.

For the analog signals, the same method is applied and they are
recorded at the angular frequency of the reference encoder. This
method is called angular sampling and is detailed in Ref. �13�. It is
mainly applied in rotating machines with synchronous transmis-
sion elements, such as gears or timing belts. Its application to a
transmission in the presence of belt slip is novel and provides
important advantages as described below. This technique is espe-
cially useful for systems with variable speed because the position
of the sampling points and the angular resolution remain exactly
the same when the speed fluctuates.

As the angular sampling frequency is constant based on the
encoder resolution, instead of performing the fast Fourier trans-
form �FFT� analysis in the time domain, this is performed in the
angular domain. In other words, the measured signals are treated
as functions of the angular position of the sampling encoder. The
sampling encoder’s position plays the role typically filled by time
in classical FFT analysis.

The spectral data are a function of angular frequency, which has
units of rad−1. The maximum angular frequency is 1 /��, where
��=2� /Ng is the angular resolution of the sampling encoder
based on Ng gratings. Increments on the angular frequency axis
are spaced at �f =1 /N��, where N is the number of sampling
encoder rising edges in the collected data. Examples of classical
Campbell and angular frequency diagrams are compared in Fig. 5.
On Fig. 5�a�, natural frequencies are located at a constant fre-
quency when speed increases while speed-dependent frequency
orders linearly increase. In the angular frequency domain, how-
ever, natural frequencies appear as hyperbola �f =��1 /��� and

(a) (b)

Fig. 1 Experimental setup for parametrically excited moving belt drive

Fig. 2 Example of instability in slack belt span

Fig. 3 Angular sampling principle
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speed-dependent frequency orders are located at a constant angu-
lar frequency �f =a ·� leads to 1 /�=a�, vertical lines parallel to
the speed axis, see Fig. 5�b�.

Thus, the main advantages of performing angular sampling in
this application are as follows:

• Sampling points are exactly located in reference to the ge-
ometry of the rotating machine, even when speed varies. It
permits to compare several measurement results based on
the same sampling conditions.

• Spectral analysis is always performed with the same accu-
racy and the same resolution. Angular sampling also ensures
that the magnitude of harmonic components are exactly es-
timated �13�.

• By choosing Encoder 3 as reference, and assuming that no
slip occurs between belt and the idler pulley since no torque
is being transmitted, the sampling points are attached to the
belt.

Therefore, it is more convenient to identify speed-
dependent frequency components on a graph with an angu-
lar frequency axis related to a chosen reference encoder.

For standard Fourier analysis, it is necessary to get the mea-
surements as a function of one single time vector with equally
spaced intervals. This requires a time resampling of the data using
linear interpolation, as shown in Fig. 4�b�.

3.4 Phase Difference Measurement. This angular sampling
method has already been used for many synchronous transmission
studies �gearbox, timing belt drive� but never for nonsynchronous

transmissions, such as serpentine multiribbed belt drives. The
transmission error � is defined as the angular rotation difference
between shaft i and shaft j,

� = �i − � · � j �13�

where � and �i,j are, respectively, the transmission ratio and the
angular positions of shaft i, j.

In the case of nonsynchronous belt drive systems, some creep
occurs between the belt and the pulleys due to the power trans-
mission by friction �17,18�. Indeed, the creep corresponds to the
relative slip between the belt and the driven pulley as the belt
elongates on the pulley contact arc as its tension increases. Here,
the transmission error between Pulleys 3 and 2 is considered.

The rotation of Pulley 3 is not totally transmitted to Pulley 2
due to the belt stretching on Pulley 2, which causes a delay.
Therefore, the mean value of the transmission error is not zero as
it is for a synchronous drive, but rather always increases �Fig. 6�.
In our application, analysis permits decomposition of the observed
transmission error as the sum of a linear function of time repre-
senting the transmission error due to the pulley belt creep �creep,
and the residual transmission error �res due to the system dynamic
as in synchronous transmission.

� = �3 − � · �2 = �res + �creep �14�

where �creep is identified from � as a linear regression of time
assuming a constant mean rotation speed. Removing the linear
part �creep from the transmission error � yields the zero-mean pe-

(a) (b)

Fig. 4 Angular resampling method „a… and time resampling method „b…

Fig. 5 Campbell diagrams in „a… time and „b… angular frequency domain
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riodic residual transmission error �res �Fig. 6�.
As mentioned in the theoretical model description, the dynamic

belt tension can be expressed as the difference of the endpoint
positions and midplane stretching from transverse vibration, see
Eq. �2�. Considering the belt span that connects Pulleys 3 and 2,
and taking into account the belt translation direction, U�L ,T� and
U�0,T� correspond, respectively, to the belt unseating point on
Pulley 3 and to the belt seating point on Pulley 2. These two
points are not fixed in space since pulley rotations oscillate around
the linearly increasing angles w3t and w2t. Assuming a no-slip
condition at these two points, U�L ,T� and U�0,T� can be esti-
mated from pulley angle oscillations multiplied by the respective
pulley pitch radius. Finally, the difference between U�L ,T� and
U�0,T� corresponds to the residual transmission error at time T.
Therefore, residual transmission error and belt tension fluctuation
are related. Figure 7 presents the measured progression of belt
tension and residual transmission error angular waterfall analysis

with change in rotation speed �note that all waterfall plots are top
views�. The same frequency components appear on each graph
and prove that the measurement system with optical encoders and
angular sampling permits evaluation of belt tension fluctuation.
Finally, this analysis shows that the transmission error includes
the pulley belt creep plus the system dynamic.

3.5 Nonuniform Belt Characteristic Identification and
Consequences. The low modulation observed on the dynamic
transmission error �Fig. 6� corresponds to the belt traveling fre-
quency and demonstrates that there are nonuniform belt charac-
teristics. In order to check this nonuniformity, a belt has been cut
in ten equal parts. Each part has been tested to determine longi-
tudinal rigidity modulus k and damping C. Each belt sample is
clamped at one end and has a mass m suspended at the other, see
Fig. 8. This system is excited via a shock hammer. The free re-
sponse is recorded via an accelerometer and postprocessed to ob-
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Fig. 6 Total „a… and residual „b… transmission error versus time

Fig. 7 Belt tension and transmission error angular top-view waterfall as a
function of rotation speed
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tain belt longitudinal stiffness and damping. Longitudinal damp-
ing coefficients of belt samples, normed by the maximum
measured value, are plotted versus belt sample number in Fig. 9.
Non-negligible variation is observed for C while local stiffness,
and therefore EA, is constant. This irregularity is probably due to
the manufacturing process �printing, cord winding, cutting�. The
low frequency modulation observed is shown to be a parametric
excitation source next.

4 Belt Span Instability Analysis

4.1 Experimental Investigation. On the global experimental
setup for a given initial belt tension and mean torque, a speed
sweep of the driving shaft is performed from 532 rpm
to 1512 rpm in 14 rpm increments �70 tests�. The experimental
results are presented in Fig. 10 as a top-view waterfall in the
angular frequency domain for �a� the transverse vibration, �b� belt
tension, and �c� belt speed. All parameters are dimensionless as
defined in Sec. 2 �waterfall FFT in the time-frequency domain are
given in Appendix�.

The belt tension angular waterfall, Fig. 10�b�, exhibits lines
parallel to the speed axis, which proves a speed-dependent exci-
tation. The belt transverse vibration angular waterfall is presented
on Fig. 10�a�. The instabilities are represented by the black spots
located on a hyperbola. which proves parametric instability. The
system is unstable for numerous frequencies.

4.2 Main Instability Regions. The main excitation of the
system comes from the pump design, which creates torque fluc-
tuations of order 2, inducing speed and tension fluctuations. Re-
garding belt instability, speed variation is a negligible source of
excitation compared to the tension fluctuation. The latter is ob-
served to be the principle source of parametric excitation and is
located on the angular frequency waterfall graph at abscissa 2.60
as a vertical line. Primary and secondary instability regions,
circled on Fig. 10�a�, are the response to this torque excitation.

Experimentally, the primary instability occurs for �1
� �7.9,8.8�. This region is classically wider than the correspond-
ing secondary region �which occurs for �1� �4.1,4.5��, but also
shifted of 0.3 from 2�1 toward lower frequencies due to the mul-
tifrequency excitation.

Considering the small transverse rigidity modulus and the large
span length in this application, the bending stiffness modulus is
neglected. Therefore, in the following, the belt span is considered
as a string ��=0�. Thus, using Eqs. �7� and �8� and Cn̄n= �1
−e−2jn��0� /2, Dn̄n=0, En̄n= �1−e−2jn��0� / �4�0�, and Enn= jn��1
+�0

2� /2. The experimental parameters introduced in the model are
�0=0.5, �1=4.3, �2=8, �2�=8, �1�=0.001, �2=0.3, �2�=0.001. For
�1=0.7, the instability region occurs for �1� �7.8 9.2�.

(a) (b)

Fig. 8 Experimental setup for the local belt characteristics
identification
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Fig. 10 Experimental angular top-view waterfall: „a… transverse vibration, „b… belt tension fluctuation, „c… belt speed
fluctuation
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The instability region boundaries are plotted as a function of the
excitation amplitude �1 in Fig. 11. When �2�2�1, the second
source of excitation shift the instability region to lower frequen-
cies. While this phenomenon is not classical, the experimental
observations confirm the theoretical results of Ref. �12�.

4.3 Low Amplitude Instability Region. The low frequency
modulation observed on the residual transmission error due to the
belt characteristic irregularity highlighted in Sec. 3.5 is a source of
parametric excitation. It appears on the waterfall plot of the ten-
sion fluctuation as low level parallel lines separated by 0.20, that
is, the belt traveling frequency. This irregularity explains the pe-
ripheral instabilities presented on Fig. 10�a�.

5 Conclusion
This paper focuses on an experimental investigation of an in-

dustrial axially moving belt subjected to multifrequency excita-
tion. Comparison with analytical results from a perturbation

analysis is presented and permits to validate theoretical instabili-
ties. The main conclusion are as follows:

• Parametric instabilities occur in experimental system such
as belt drive.

• Measurement system based on angular sampling is shown to
be an efficient tool for instability analysis in belt drive sys-
tems.

• Irregular belt characteristics have been detected and high-
lighted as unexpected source of parametric excitation.

• Instability regions are shifted when subjected to multifre-
quency excitation.

• Experimental observations confirm the theoretical results.

Further analysis will focus on the role of the hysteretic behavior
of the belt tensioners on these instabilities.

Appendix
Figure 12 represents the top-view waterfall in the classical

Campbell-like diagram.
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1 Introduction
The constant demand and necessity for lightweight efficient

structures continue to encourage engineers to the field of struc-
tural optimization and simultaneously to the use of nonconven-
tional materials. In many situations, fiber reinforced polymeric
�FRP� matrix composites provide opportunities for enhanced effi-
ciency, primarily because of their high strength-to-weight ratios.
There exists a large activity in the area of material characteriza-
tion, analysis, fabrication, and design of composite structures
�1–10�. The lightweight and high corrosion resistance of FRP
composites make them particularly suitable for bridges, aerospace
components, storage tanks, and pressure vessel, or large-span
structural members. In this paper, the FRP structural members that
are modeled are thin-walled orthotropic cylindrical shells and it is
their elastic buckling performance under axial compression forces
that provides the major focus. It is well known that axially com-
pressed cylindrical shells have a buckling behavior, which is very
sensitive to initial geometric imperfections �11�. The price paid for
utilizing the optimal characteristics of the shell are that any small
deviations from the idealized, or perfect, geometry result in very
severe reductions in the load carrying capacity. Indeed, the stron-
ger is the optimum the more sensitive are the buckling loads to
small changes in geometric form. This characteristic of shell
buckling is more conventionally referred to as imperfection sen-
sitivity. Viewed in this way, optimization and imperfection sensi-
tivity are seen to be different sides of the same coin. For increas-
ing amplitudes of initial imperfection, the reduced buckling loads
are commonly referred to as imperfection sensitive buckling be-
havior.

The present paper investigates the nonlinear buckling behavior
of the FRP composite cylindrical shells having material properties
similar to those of columns that were recently studied experimen-
tally by Yamada and Komiya �12,13�. From accurate solutions of
the nonlinear shell equations, it will be demonstrated that for in-
creasing amplitudes of initial imperfections the elastic buckling
loads exhibit well defined lower bounds. Moreover, an extension
of classical buckling theory �14–16� to provide what has became

known as “reduced stiffness” theory, in the same as way as for
related isotropic cylinders �17,18�, is shown to provide analytical
predictions of these lower bound buckling loads.

2 Nonlinear Buckling Analysis
For an imperfect thin-walled circular cylinder of longitudinal

length L, wall thickness t, and radius R, shown in Fig. 1, the
change in the total potential energy, consequent upon the applica-
tion of a uniform axial compression stress of �, may be written as

� = UM + UB + V� �1�

where UM are the various contributions to the membrane strain
energies, UB the bending energies, and V� the increase in load
potential. Under the action of an axial compressive stress of �,
these energy contributions are given as

UM =
1

2�
0

2�R�
0

L

�nx�x + ny�y + 2nxy�xy�dxdy �2a�

UB =
1

2�
0

2�R�
0

L

�mx�x + my�y + 2mxy�xy�dxdy �2b�

V� = − �t�
0

2�R�
0

L �−
�u

�x
�dxdy �2c�

In these expressions, �nx ,ny ,nxy� and �mx ,my ,mxy� are the total
bending and membrane stress resultants, and ��x ,�y ,�xy� and
��x ,�y ,�xy� are the corresponding strains associated with dis-
placements �u ,v ,w� from an imperfect but stress-free unloaded
state.

Total bending and membrane stress resultants are related to
strains through the orthotropic constitutive equations:

nx = A11�x + A12�y, ny = A12�x + A22�y, nxy = 2A66�xy

mx = D11�x + D12�y, my = D12�x + D22�y, mxy = 2D66�xy

�3�

For deformations from an initial imperfection, w0, the strain-
displacement relations are taken to be of the Donnell–Mushtari–
Vlasov type for shallow shells �14–16�, for which
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�x =
�u

�x
+

�w0

�x

�w

�x
+

1

2
� �w

�x
�2

�4a�

�y =
�v
�y

−
w

R
+

�w0

�y

�w

�y
+

1

2
� �w

�y
�2

�4b�

�xy =
1

2
� �u

�y
+

�v
�x

+
�w0

�x

�w

�y
+

�w0

�y

�w

�x
+

�w

�x

�w

�y
� �4c�

�x = −
�2w

�x2 , �y = −
�2w

�y2 , �xy = −
�2w

�x�y
�4d�

End boundaries are assumed to be supported in such a way as to
conform with the classical simple support, corresponding with the
conditions,

w = 0,
�2w

�x2 = 0,
�u

�x
= 0, v = 0 at x = 0,L �5�

By taking displacement functions u, v, and w as linear combi-
nations of the harmonic expressions

u = �
i

�
j

Ji
u

ui,j cos�iy/R�cos�j�x/L� �6a�

v = �
i

�
j

Ji
v

vi,j sin�iy/R�sin�j�x/L� �6b�

w = �
i

�
j

Ji
w

wi,j cos�iy/R�sin�j�x/L� �6c�

these boundary conditions will be exactly satisfied since each
separate component satisfies the boundary conditions of Eq. �5�.
In these expressions, i and j are the circumferential full-wave and
the longitudinal half-wave numbers; ui,j ,vi,j ,wi,j are the ampli-
tudes of each harmonic function. The initial geometric imperfec-
tion is taken to consist of a harmonic

w0 = wb,f
0 cos�by/R�sin�f�x/L� �7�

in which b and f represent the circumferential full-wave and lon-
gitudinal half-wave numbers. To provide convergence of the non-
linear postbuckling response, extensive numerical experiments
have established that a total choice of 64 �=28+17+19� modes are
required in Eqs. �6a�–�6c�, for a particular imperfection mode
adopted as follows. For u, a total of 28 degrees of freedom,

J0
u = 21 for i = 0 and j = 1,3,5,7,9,11,13,15,17,19,21

Jb
u = 15 for i = b and j = 1,3,5,7,9,11,13,15

J2b
u = 11 for i = 2b and j = 1,3,5,7,9,11

Table 1 Lamination details

Vy /V Laminate configuration

C20T 0.2 904 /032 /904
C50T 0.5 9010 /020 /9010
C80T 0.8 9016 /08 /9016
C50L 0.5 010 /9020 /010

Fig. 2 Lamination details

Fig. 1 Notation used for cylindrical shell
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J3b
u = 5 for i = 3b and j = 1,3,5 �8a�

For v, a total 17 of degrees of freedom,

Jb
v = 15 for i = b and j = 1,3,5,7,9,11,13,15

J2b
v = 11 for i = 2b and j = 1,3,5,7,9,11

J3b
v = 5 for i = 3b and j = 1,3,5 �8b�

For w, a total of 19 degrees of freedom,

J0
w = 15 for i = 0 and j = 1,3,5,7,9,11,13,15

Jb
w = 11 for i = b and j = 1,3,5,7,9,11

J2b
w = 9 for i = 2b and j = 1,3,5,7,9 �8c�

Since only buckling that is symmetric about the midlength of the
shell is being considered, just odd values of j are included.

The sets of nonlinear algebraic equations are obtained through
the stationarity of the total potential energy with respect to each of
the displacement degrees of freedom included in Eqs. �6a�–�6c�.
Solution of these sets of nonlinear equation is achieved using a
step-by-step process in which either load or a suitable displace-
ment is used as the control parameter. At each step, a Newton–
Raphson iteration is used to provide convergence to an acceptable
level of precision. A more complete description of the theoretical
model for the related isotropic cylinders is included in Yamada
and Croll �17�, which lists the integration coefficients for all terms
up to and including the quartic �fourth-power� energy terms. Ap-
propriate numbers of Newton–Raphson iterations and the choice
of a suitable control parameter depend on the nature of the local
nonlinearities of the equilibrium path �18�.

3 Axisymmetric Buckling Load and Structural Model-
ing

For understanding the fundamental buckling load carrying ca-
pacity of orthotropic cylindrical shells, it is helpful to obtain the

axisymmetric buckling loads since these allow comparisons with
the well-known classical buckling loads for the associated isotro-
pic shells. If we adopt just i=0 in Eqs. �6a�–�6c�, an eigenvalue
equation will result for the linear buckling problem if it is as-
sumed that the prebuckling membrane stress state is uniform. Us-
ing �nx=−�t, ny =0, nxy =0�, the lowest axisymmetric critical load
and its associated critical wave number in the axial direction are
given by

�s =
2

Rt
	D11�A11A22 − A12

2 �
A11

�9a�

js =
L

�
�A11A22 − A12

2

D11A11R
2 �1/4

�9b�

For isotropic cylinders having Poisson’s ratio �, �s=�cl

=Et / �R	3�1−�2�� is the well-known classical buckling stress and
js,iso= jcl=L�12�1−�2��1/4 / ��	Rt�. For convenience, the compres-
sive stress may be expressed as a nondimensional load parameter

� or �̄ defined as

� = �/�s, �̄ = �/Ex �10�

where Ex is effective axial Young’s modulus, which, from Eq. �3�,
takes the form

Ex = �A11A22 − A12
2 �/�tA22� �11�

In the following analytical studies, a commercially available uni-
directional glass fiber lamina unit with a 0.2 mm thickness has
been adopted for a shell consisting of 40 laminations. This lamina
unit is used to develop four types of orthotropic cylindrical shell
arranged with three layers having a total thickness t=8 mm and
arranged symmetrically about the midsurface as listed in Table 1;
fiber orientations are relative to the axial direction. Total volume
of fiber has been fixed at V=60%, and the fiber volume ratio in
the circumferential direction Vy is adopted as the variable param-
eter in this study. Lamination details are represented in Table 1

Table 2 Coefficients in Eq. „3…

A11 A12 A22 A66 D11 D12 D22 D66
�MN/m� �N m�

C20T 312 15.0 125 23.9 1180 80.0 1150 128
C50T 218 15.0 218 23.9 541 80.0 1790 128
C80T 125 15.0 312 23.9 347 80.0 1980 128
C50L 218 15.0 218 23.9 1790 80.0 541 128

Fig. 3 Selected results for shell C50T „b=9… showing „a… load against deflection responses and „b… imper-
fection sensitivity
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and Fig. 2. Table 2 shows the coefficients in Eq. �3� obtained from
the classical lamination theory and related by coupon tests in Ya-
mada and Komiya �12,13�.

4 Nonlinear Analytical Results for the Pre- and Post-
buckling Behaviors of Imperfect Shells

Due to the limitations of space, this paper considers only the
results for shells having the geometric parameter Z
=0.942L2 / �Rt�=100. It is well known that for complete, isotropic,
cylinders, this parameter, often referred to as the Batdorf param-
eter, is sufficient to characterize the classical critical behavior
when the shallow shell assumptions �DMV formulation� are used.
This means that the linearized governing equations can be normal-
ized in terms of the single independent geometric parameter Z. In
the present study, the radius thickness ratio R / t=405 has been
selected to conform with previous studies �11,17�, so that for Z
=100 it follows that in all cases L /R=0.512. In the nonlinear

postbuckling behavior, however, other independent geometric pa-
rameters are needed for both isotropic and the present orthotropi-
cally shells.

Included in Fig. 3�a� are the representative imperfect equilib-
rium paths for shell C50T having initial geometric imperfections
with a single axial half-wave f =1 and circumferential wave num-
ber b=9. The horizontal axis in Fig. 3�a� represents the total dis-
placement component in this same mode. It is apparent that the
buckling behavior has two distinct forms. For small imperfections,
those having w9,1

0 / t	0.2, the buckling loads are effectively inde-
pendent of imperfection amplitude for the mode. In Fig. 3�b�, the
horizontal axis represents the amplitude of initial imperfection,
and the vertical axis is the buckling loads; the buckling loads for
b=9 are shown to be clustered at �=0.65 when w9,1

0 / t	0.2. To
help interpret this change in behavior as imperfection levels are
increased, Figs. 4 and 5 show the incremental displacement at the
buckling points for imperfection having amplitude w9,1

0 / t=0.10

Fig. 4 Incremental displacement modes at the buckling points for small imperfection
w0 / t=0.10 in shell C50T „b=9… showing „a… shape, „b… axial profile at y=0, and „c… circum-
ferential profile at x=L /2
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and 1.60, respectively. As is shown in relation to Fig. 4, the in-
cremental deformation at the buckling load, for a typical example
of one of these small imperfections, exhibits a mode shape, which
has a circumferential wave number dominated by i=18 and a
mixture of both j=3 and 5 axial half-waves. As shown in Fig.
6�b�, it is this mode that exhibits the lowest classical critical load
�c for the three modes i=0,9 ,18 taken into account for the
present nonlinear studies. In mode i=18, the critical load is just a
little higher than the minimum �cm occurring in j=4 and i=17.
For larger imperfections, those having w9,1

0 / t
0.2, Fig. 3 also
shows that there is a relatively high degree of sensitivity of buck-
ling loads to changes in imperfection amplitude. Figure 5 shows
that the incremental deformation at the buckling load, for a typical
case of these larger imperfections, exhibits a mode having a cir-
cumferential wave number close to that predicted by the reduced
stiffness model. A combination of i=9 and 18 results in a com-
pound circumferential mode shape that is shown in Fig. 5�c� to
have a localized circumferential wavelength that is close to i
=15. A coupling with shorter axial wavelength j=3,5 results in
the axial mode shape of the incremental deformation at buckling
being close to j=3. This coupling in the postbuckling response

will be discussed further in relation to the reduced stiffness model
in the next section. Here as elsewhere we use the term “incremen-
tal displacement” to represent small changes occurring at the
buckling loads; these often differ significantly from the “total de-
formation.” It is these incremental displacements that provide a
better guide to the stiffness distributions at the instant of buckling.

Imperfections having different circumferential wave numbers
exhibit very similar forms of behavior. However, it is noticeable in
the summarized results of Fig. 6 that at moderate levels of imper-
fection the wave number b, displaying the highest level of imper-
fection sensitivity, is generally that for which in mode j=1 the
shell has the lowest classical critical load. For a given amplitude
of imperfections having moderate amplitudes, wb,1

0 / t
0.2, it is
when b is between 12 and 13 in Fig. 6�a� that the shell C20T
experiences the lowest buckling loads. It is also around i
=12–13 that the lowest classical critical load �c occurs in mode
j=1. For shell C50L shown in Fig. 6�d�, these minima both occur
at around i=b=13–14. In each of the cases shown in Fig. 6, there
are also well defined minimal buckling loads. These are summa-
rized in Table 3. For shell C20T, this minimum occurs in mode
b=11 at a load level �N=0.230. In this mode, an imperfection

Fig. 5 Incremental displacement modes at the buckling points for a large imperfection
w0 / t=1.60 in shell C50T „b=9… showing „a… shape, „b… axial profile at y=0, and „c… circum-
ferential profile at x=L /2
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having an amplitude w9,1
0 / t
1.2 would not exhibit a maximum,

buckling, load and the equilibrium path would monotonically ap-
proach from below this same level of load �N=0.230. In a similar
way for other imperfection wave numbers b, the absence of a
buckling load above a certain threshold level of imperfection, in
all the studies shown in Fig. 6, also implies that there is no maxi-
mum, buckling, load exhibited at that level of imperfection.

It would be of considerable practical advantage if simple analy-
sis could predict the levels of these lowest imperfection sensitive
buckling loads.

5 Buckling Lower Bounds and the Reduced Stiffness
Method

In previous studies, it has been shown that the lower bounds to
the scatter of imperfect experimental and numerically simulated
buckling loads are reliably predicted by the reduced stiffness
method �see, for example, Refs. �17–20��. For a particular shell
buckling problem, this method has the great advantage of being
based upon a very simple extension of a classical bifurcation
analysis. It argues that of the various shell energy components that
provide the resistance within the various possible critical buckling

modes, it will be the membrane components that are lost as a
result of the nonlinear mode couplings occurring in the postbuck-
ling range. As a lower bound to the buckling into these modes will
be an equivalent bifurcation analysis from which these at risk
membrane energy components have been eliminated. From this
perspective, it becomes clear that all the potential loss of stiffness
and associated imperfection sensitivity within a given buckling
mode is contained within an appropriate interpretation of the clas-
sical linear bifurcation analysis. Both upper and lower bounds to
imperfection sensitive buckling loads therefore become possible
from just a linear bifurcation analysis.

The classical bifurcation analysis for a prospective buckling
deformation i , j from a uniform prebuckling stress and strain state
could be represented in terms of energy as

U2B + U2M + �C� �V2M
x

��
+

�V2M
y

��
� = 0 �12�

In this equation, the subscripts 2 for all terms imply, that they
belong to the quadratic form; U2B is the linear bending energy;
U2M is the linear membrane energy; V2M

x and V2M
y are the linear-

ized membrane energy components associated with, respectively,

Fig. 6 Plots of nonlinear buckling loads for various imperfection amplitudes and circumferential wave number b with
single axial number compared with the linear buckling loads or the reduced stiffness buckling loads

Table 3 Lower limits for nonlinear buckling

�cm
N b�bL /R� wb,1

0 / t �
cm
* �i , j� �cm �i , j�

C20T 0.230 11�5.63� 1.20 0.267�15,2� 0.615�16,3�
C50T 0.247 11�5.63� 1.40 0.283�16,3� 0.637�17,4�
C80T 0.216 9�4.61� 2.00 0.278�16,3� 0.631�17,5�
C50L 0.131 11�6.65� 1.00 0.151�14,1� 0.363�17,2�
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the axial and circumferential directions. Here as elsewhere �see,
for example, in Refs. �18,19��, “linear” is used in the sense of
being derived from the linear strain-displacement relationships in
the incremental critical deformations, while “linearized” implies
an interaction between the fundamental membrane state and the
quadratic contributions to the membrane strain-displacement rela-
tionships. Solution of Eq. �12� will result in the spectra �c shown
by the lighter solid curves in Fig. 6. As in Ref. �17�, icm is defined
to be the circumferential full-wave number associated with the
lowest classical linear critical loads �cm.

For the C50T shell, Fig. 7 shows for selected modes the break-
down of the incremental quadratic components of the energy,
where the energies are normalized by 24�wi,j

2D11L / �R / t2�. It can
be seen that V2M

x provides the negative destabilizing contributions
to the critical loads �c. Both the linear bending U2B and mem-
brane U2M energies contribute to the stabilization, as does the
linearized circumferential component V2M

y .

In Refs. �17,18�, it has been demonstrated that for pressure and
axially loaded isotropic cylinders, both the linear membrane, U2M,
and linearized circumferential, V2M

y , energies are with increasing
imperfection eventually eliminated at buckling. It is suggested
that similar behavior will occur for FRP cylinders. Based upon a
reduced energy, the critical load, �*, may be obtained by solving
the equation for the prospective buckling deformation i and j, as
follows:

U2B + �
C
* �V2M

x

��
= 0 �13�

For the present orthotropic cylinders, this equation gives an ex-
plicit expression for the reduced stiffness criterion as

�
C
* =

R

L2	A11�A11A22 − A12
2 �

D11

�
D11�j��4 + 2�D12 + 2D66��j��2�iL/R�2 + D22�iL/R�4

�2A11A22 − A12
2 ��j��2 + A12A22�iL/R�2

�14�

Reduced stiffness spectrum curves for selected j values, obtained
from Eq. �14�, are shown in Fig. 6 by the heavy solid curves.

Through extensive numerical simulation and direct experimen-
tal observation, it has been shown that for a particular value of
axial half-wave j, it will be that circumferential mode icm, which
corresponds with the minimum classical critical load, into which
the buckling will be biased. A lower bound to the buckling into
this mode will be the associated reduced stiffness critical load,
�

cm
* . Depending on the disposition of the fiber reinforcement, the

lowest reduced stiffness critical load �
cm
* will be associated with

different axial wavelengths. For isotropic shells, the classical criti-
cal minimum �cm occurs for a wide range of j values but it is j
=1 that produces the lowest value for �

cm
* �see, for example, Ref.

�18��. Figure 6 shows that the lowest values of both �cm and �
cm
*

depend on the particular properties of the fiber lay-ups. For shell
C50T, the minimum classical critical load is �cm=0.637 occurring
in the mode �icm, jcm�= �17,4�. For this same shell, the minimum
reduced stiffness critical load �

cm
* =0.283 can be seen in Fig. 6�b�

to be associated with the mode �i
cm
* , j

cm
* �= �16,3�. For the shell

C50L, Fig. 6�d� shows that �cm=0.363 in mode �icm, jcm�
= �17,2� and �

cm
* =0.151 in mode �i

cm
* , j

cm
* �= �14,1�. In these and

all other cases considered, the values of the reduced stiffness criti-
cal load have a close correspondence with the lowest recorded
numerically predicted buckling loads.

To provide additional confirmation of the lower boundedness of
the present reduced stiffness critical load �

cm
* , the lower limits of

the nonlinear analytical buckling loads plotted by various dots in
Fig. 6 have been compared with the present reduced stiffness ana-
lytical results. The many dots in Fig. 6, for example, show the
buckling loads for imperfections in modes 7�b�19 �3.58
�bL /R�9.73� and f =1. For shell C50T, the minimum buckling
load �cm

N =0.230 occurs for the imperfection having wavelength
�b , f�= �11,1�. Although the initial imperfection has a shape that
does not correspond to the wavelength associated with �

cm
* , the

incremental mode shape at the buckling load, shown in Fig. 8, is
as close to that of the reduced stiffness mode shape as the limita-
tions in the degrees of freedom for the present analysis would
allow. Through a combination of modes i=11 and 22, the circum-
ferential wavelength of the incremental displacement at the mini-
mum buckling load shown at midlength in Fig. 8�c� can, at the
location where the maximum displacement occurs, be seen to
have an effective length close to �R /15. This is close to i

cm
* =16

that characterizes the reduced stiffness prediction. Through a com-
bination of the modes j=1–5, the axial half wavelength associ-
ated with the lowest imperfect buckling load can be seen in Fig.
8�b� to be close j=3. As shown in Fig. 6�b�, the reduced stiffness

Fig. 7 Energy components
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loads �
cm
* are almost equal for modes j=2 and 3. It is worth

remembering that for the current choice of degrees of displace-
ment freedom, included in the nonlinear analyses of Eqs.
�6a�–�6c�, precludes consideration of buckling into a mode j=2.
Figure 5 shows the nature of the incremental displacements at the
lowest buckling load for the imperfection w0 / t=1.6 having b=9.
Again, an imperfection having a very different form to the mode
associated with �

cm
* can be seen to eventually buckle into a de-

formation that is very close to �i
cm
* , j

cm
* �= �16,3�. Other shells can

be seen in Fig. 6 to show very similar levels of agreement be-
tween the lower bound to the nonlinear buckling studies and the
predictions of lower bounds using the reduced stiffness approach.
They also show how the incremental buckling deformations at the
lowest buckling loads are close to those predicted by the reduced
stiffness method, even though the shapes of the initial imperfec-
tion may be very different.

Figure 9 shows how the sensitivity of buckling loads for the
present FRP shells compares with that of the related isotropic

shell �18� in those modes that display the most extreme imperfec-
tion sensitivity. For the present cases of FRP shells, the knock-
down factors are somewhat less than for the isotropic shell having
the same geometric parameters. For each case, it is clear that the
lower limit to the imperfection generated knockdown is approxi-
mated by the associated reduced stiffness predictions shown in
Fig. 6.

Figure 10 shows the variations of the classical critical loads �cm
and reduced stiffness prediction �

cm
* for variation in the circum-

ferential fiber volume fraction Vy /V. It is clear that the axial
wavelengths for both the minimum classical and reduced stiffness
critical loads depend on the distribution of fiber between the axial
and hoop directions, but perhaps not as much as might have been
expected. It can be seen that the axial wave numbers associated
with �cm

c , �
cm
* increase as the ratio Vy /V becomes larger. Associ-

ated with this increase in jcm and j
cm
* is a shortening of the critical

circumferential wavelength indicated by an increase in icm and

Fig. 8 Incremental displacement modes at the buckling points for a large imperfection
w0 / t=1.40 in shell C50T „b=11… showing „a… shape, „b… axial profile at y=0, and „c… cir-
cumferential profile at x=L /2
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i
cm
* . The maximum of �cm

c is obtained when Vy /V=0.15 for T
series and Vy /V=0.80 for L series, with both occurring at very
similar stress levels. Maximum safe loads carrying capacities, as
measured by �

cm
* , are likewise relatively insensitive to the circum-

ferential fiber volume fraction. However, Fig. 10 shows that �
cm
*

reaches its maximum value for Vy /V around 0.1 for the T series
and 0.9 for the L series.

6 Conclusions
In the present study, an elastic, nonlinear, Ritz analysis has been

developed to allow investigation of the imperfect behavior of axi-

ally compressed orthotropic FRP cylindrical shells. In a particular
mode, buckling loads are shown to be strongly influenced by the
constitutive material coefficients and are sensitive to initial geo-
metric imperfections. However, the lower bounds to imperfection
generated knockdown in buckling loads are remarkably insensi-
tive to the particular distribution of fiber reinforcement. Just as for
the previously analyzed isotropic cylindrical shells, the reduced
stiffness criteria are shown to provide close lower bounds to the
imperfection sensitive elastic buckling loads for imperfect ortho-
tropic cylindrical shells. The potential benefits in the use of the
reduced stiffness theoretical results to allow specification of the
optimal designs of these classes of complicated composite struc-
tures are illustrated through the determination of the values of the
circumferential fiber volume ratio producing maximum safe load
capacities.
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Experimental Investigation of the
Painlevé Paradox in a Robotic
System
This paper aims at experimentally investigating the dynamical behaviors when a system
of rigid bodies undergoes so-called paradoxical situations. An experimental setup corre-
sponding to the analytical model presented in our prior work Liu et al. [2007, “The
Bouncing Motion Appearing in a Robotic System With Unilateral Constraint,” Nonlinear
Dyn., 49(1–2), 217–232] is developed, in which a two-link robotic system comes into
contact with a moving rail. The experimental results show that a tangential impact exists
at the contact point and takes a peculiar property that well coincides with the maximum
dissipation principle stated in the work of Moreau [1988, “Unilateral Contact and Dry
Friction in Finite Freedom Dynamics,” Nonsmooth Mechanics and Applications,
Springer-Verlag, Vienna, pp. 1–82] the relative tangential velocity of the contact point
must immediately approach zero once a Painlevé paradox occurs. After the tangential
impact, a bouncing motion may be excited and is influenced by the speed of the moving
rail. We adopt the tangential impact rule presented by Liu et al. to determine the postim-
pact velocities of the system, and use an event-driven algorithm to perform numerical
simulations. The qualitative comparisons between the numerical and experimental results
are carried out and show good agreements. This study not only presents an experimental
support for the shock assumption related to the problem of the Painlevé paradox, but can
also find its applications in better understanding the instability phenomena appearing in
robotic systems. �DOI: 10.1115/1.2910825�

Keywords: Painlevé paradox, robotic system, instability phenomenon, impulsive
dynamics

1 Introduction
It is well known that the rigid body model for mechanical sys-

tems with unilateral constraints and friction may possess some
singularities, at which the dynamical equations will have multiple
solutions or even no solution at all. The classical Painlevé ex-
ample, where a planar slender rod slides on a rough surface, rep-
resents the simplest system with such singularities. Recently, the
interest in understanding the physical phenomena corresponding
to the singular situations has witnessed a substantial increase
�1–30�. Rich information and a good overview on the subject can
be found in the excellent book written by Brogliato �5�, which
contains a wide variety of the problem of interest and a long list of
references.

When Coulomb friction is coupled to unilateral constraints,
rigid body models may have no solution for certain configura-
tions. An important viewpoint adopted by many authors is that a
shock should then exist at the contact point. Since the shock oc-
curs in a special situation without normal velocity and friction is
considered to be the main cause for its occurrence, different no-
menclatures can be found in the literature, such as the impact
without collision �IW/OC�, frictional catastrophe, or tangential
impact �11,12,16,19�. According to the shock assumption, some
crucial results can be deduced and the problem of the Painlevé
paradox seems to be solvable. For example, recent development
related to the time-stepping numerical method indicates that the
singularity of rigid body model can be successfully avoided if the
contact forces are allowed to be impulsive �24,25,30,31�, thus
confirming a fact observed numerically in Refs. �11,28�. Obvi-

ously, the shock assumption is fundamental for the problem of
Painlevé paradox, and the validation from experiments should be
introduced. One aim of this paper is to develop an experimental
method to support the shock assumption.

The Painlevé phenomenon was firstly discovered in the classi-
cal Painlevé example �a slender rod that slides on a rough plane�,
and many excellent theoretical results are motivated from the
simple system. However, using the example to serve as the ex-
perimental model creates a lot of difficulties. For instance, the
coefficient of friction in the system has to be greater than 4 /3 for
the occurrence of the Painlevé paradox, a large value rarely found
in practical materials �16�. Meanwhile, the sliding of a rod under
gravity is also difficult to be implemented in practice. Therefore, it
is crucial to search for a new example that can involve the para-
dox and can be easily implemented by experiments. Such ex-
amples have been presented in Refs. �15,28�, where it has been
shown that the Painlevé paradoxes may occur for arbitrarily small
values of the coefficient of friction.

Recent studies have indicated that the Painlevé paradox may be
a common phenomenon and could be found in a variety of differ-
ent applications such as robotic manipulation, legged locomotion,
and vehicle braking systems �15,26–28�. Especially, according to
our recent work for a robotic system that comes into contact with
a moving belt �28�, the Painlevé paradox will appear even though
the coefficient of friction takes a very small value. In this paper,
we will use the analytical model presented in Ref. �28� to develop
an experimental setup for the demonstration of the dynamical be-
haviors associated with the Painlevé paradox.

According to the theoretical analysis shown in Ref. �28�, the
Painlevé paradox can be found by setting the robotic system
within a paradoxical configuration, which depends on the practical
value of the coefficient of friction. By conducting the shock as-
sumption into the paradoxical situation of the robotic system, and
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using the Darboux–Keller’s method �21,32–37�, it is also shown
that the tangential impact will take a peculiar property; the relative
motion of the contact point must be immediately brought into a
stick in tangential direction. Therefore, the shock assumption can
be verified by observing whether there is a tangential stick in
paradoxical situations. In our experiments, two laser vibrometers
with precise accuracy will be used to carefully measure the
changes of the contact relative velocities of the robotic system.

Using numerical methods to reproduce the dynamical behaviors
is significant for the analysis of mechanical systems. It is obvious
that a jump rule related to the tangential impact should be pro-
vided for systems involving paradoxical situations. Since the tan-
gential impact will excite a bouncing motion that can make the
system contain different modes of motion such as slipping phases,
collisions with friction, and flying without contact, an event-
driven algorithm will be used to perform the numerical simula-
tions. Qualitative comparisons between the numerical and experi-
mental results are carried out.

Based on the numerical analysis and the experimental observa-
tion, two instability phenomena exhibited in robotic systems are
discovered: one that is the bouncing motion induced by a tangen-
tial impact, and the other that is related to a slip-stick motion that
appears in the robotic system without the occurrence of the Pain-
levé paradox. The first case indicates that the problem of the Pain-
levé paradox will extremely influence the controllability of the
robotic system, as pointed out by Brogliato �4�. The second case
shows that the stick-slip motion is periodic when the rail moves
with a constant velocity.

The organization of thus study is as follows. Section 2 presents
the description of the model for a two-link manipulator. The key
theoretical results developed in Ref. �28� for the paradoxical situ-
ation will be reviewed in Sec. 3. The experimental setup and the
phenomena associated with the paradoxical situations will be ex-
hibited in Sec. 4. Section 5 provides the comparison between the
numerical and experimental results. We conclude in Sec. 6 with a
summary and the potential application of our study.

2 Two-Link Manipulator With Unilateral Constraint
This section will first conduct the model of a two-link robotic

system, and then find the condition for the occurrence of the Pain-
levé paradox by using a linear complementarity problem �LCP�
method, a theory for nonsmooth dynamics established by Moreau
�38,39� and then extended into the multibody systems by Pfeiffer
and Glocker �2�.

The manipulator is shown in Fig. 1, which consists of two
identical rods with length l and mass m and comes into contact
with a moving belt with velocity vt. The external torques �1 and �2

are applied on Joints O and A. H is the height from the Fixed
Point O to the rough surface. The joint angles �1 and �2 are
selected as the generalized coordinates of the system when uncon-
strained by contact, and their positive values are assigned along
the counterclockwise direction.

We set an inertial coordinate frame Oxy attached at Joint O, and
suppose that a local inertial coordinate frame �B , t ,n� with origin
located at Contact Point B, is defined such that n is normal to the
contact surface and �t ,n� forms a right-handed coordinate system.
�Ft ,Fn� represent the contact forces in the tangential and normal
directions. The components in Oxy for the Contact Point B can be
expressed by the generalized coordinates.

x = �xt

xn
� = � l�sin �1 + sin �2�

− l�cos �1 + cos �2� � �1�

These kinematics can yield the contact Jacobian matrix K that
relates velocities and accelerations of the Contact Point B to the
generalized coordinates through the relations

ẋ = KTq̇ �2�

ẍ = KTq̈ + S �3�
where

K = �K1

K2
� = �l cos �1 l sin �1

l cos �2 l sin �2
�

S = �S1

S2
� = �− l��̇1

2 sin �1 + �̇2
2 sin �2�

l��̇1
2 cos �1 + �̇2

2 cos �2�
�

The governing equations for the system with persistent contact
can be written as

q̈ = M−1KF + M−1�− R + W� �4�
where

M = � 4ml2/3 ml2 cos��1 − �2�/2
ml2 cos��1 − �2�/2 ml2/3 � ,

F = �Ft

Fn
�, q̈ = ��̈1

�̈2

�
W = ��1 − �2 − 3mgl sin �1/2

�2 − mgl sin �2/2 �, R = �ml2�̇2
2 sin��1 − �2�/2

ml2�̇1
2 sin��1 − �2�/2

�
The substitution of Eq. �3� into Eq. �4� leads to

ẍ = QF + KTM−1�− R + W� + S �5�
where

Q = KTM−1K = �Q11 Q12

Q21 Q22
� �6�

is a matrix that depends only on the configuration of the system.
Fact 1. Q is a symmetric and positive definite matrix, since M

is a symmetric positive matrix and K is full rank in most
cases �i.e., K may have singularities only in some extreme
configurations�.

The relative velocity between the contact point and the belt is

ẋr = xt − vt = l��̇1 cos �1 + �̇2 cos �2� − vt �7�

If ẋr�0, the manipulator will slip on the moving belt; otherwise,
the tip sticks on the belt. Defining a velocity-dependent coefficient
of friction �, in which �=�0 for ẋr�0 and �=−�0 for ẋr�0, the
relationship between the tangential and the normal contact force
by Coulomb’s frictional law can be expressed as

Ft = � · Fn �8�

Fig. 1 Two-link manipulator contacting with a constantly mov-
ing belt
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During the slip mode, the dynamical equations in tangential and
normal directions take the following form:

ẍn = A�q,�� · Fn + B�q,q̇� �9�

ẍt = C�q,�� · Fn + D�q,q̇� �10�

where

A�q,�� = �Q21 + Q22, B�q,q̇� = K2
TM−1�− R + W� + S2

C�q,�� = �Q11 + Q12, D�q,q̇� = K1
TM−1�− R + W� + S1

Combining the Signorini complementarity condition �ẍn�0,
Fn�0 and ẍn ·Fn=0� with Eq. �9� gives the standard formulation
of a LCP whose unknown is Fn and whose matrices �here a scalar�
are A�q ,�� and B�q , q̇�. Obviously, negative values of A will
make this LCP possess multiple solutions or no solution at all. As
illustrated by many authors, a so-called impact without collision
occurs because of the configurations in which A�0 and B�0.

More interestingly, by observing the ingredients of the coeffi-
cient A, we can find that the paradoxical situation just depends on
the configuration of the system and the velocity-dependent coef-
ficient of friction. Therefore, for a given coefficient of friction, the
Painlevé paradox is allowed to occur only when the system takes
the paradoxical configurations, for which A�0. In other words,
we can rely on the practical value of the coefficient of friction to
determine the initial configuration that can make the Painlevé
paradox appear.

3 Properties of the Tangential Impact and the Impact
Rule

By conducting the shock assumption into the paradoxical situ-
ations, the theoretical description related to the properties of the
tangential impact and the impact rule for the robotic system have
been presented in Ref. �28�. In this section, some key results will
be introduced.

3.1 Properties of the Tangential Impact. In order to con-
sider the coupling between normal and tangential motions, the
experience of an impact with friction must be carefully investi-
gated. By assigning to the impact duration a very short but not
infinitesimal time, Darboux �37� and Keller �34� developed a
method that yields a set of differential equations with respect to
the normal impulse, a “time like” independent variable. These
nonlinear differential equations describe the impulsive behaviors
�the impact dynamics�, such that the singularities of impacts due
to friction can be successfully avoided �35,36�. This method has
been extended for the investigation of the properties of the tan-
gential impact �28�.

Let us set the impact duration as �t0 , tf� and divide this short
time into much smaller intervals �ti , ti+1�. Integrating Eq. �5� and
ignoring the contribution of the finite forces on �ti , ti+1� yield the
following differential equations of motion:

dẋt = Q11dPt + Q12dPn

dẋn = Q21dPt + Q22dPn �11�

where

dPt =�
ti

ti+1

Ftdt, dPn =�
ti

ti+1

Fndt

are the changes of tangential and normal impulses on �ti , ti+1�,
respectively.

Now, applying the relationship dPt /dPn=� defined by Cou-
lomb’s frictional law into Eq. �11� directly leads to

dẋt = ��Q11 + Q12�dPn

dẋn = ��Q21 + Q22�dPn �12�

where

dẋt =�
ti

ti+1

ẍtdt, dẋn =�
ti

ti+1

ẍndt

are the changes of the tangential and normal velocities,
respectively.

During the interval �ti , ti+1�, the normal impulse is a strictly
monotone function of time. This permits us to think of it as a time
like independent variable, and to perform a time scale of the shock
dynamics. Thus, Eq. �12� is a set of first order ordinary differential
equations with respect to dPn, which varies like a time variable.
Combining Eq. �12� with the condition for the occurrence of the
Painlevé paradox, we can deduce the property of the tangential
impacts, which is elucidated by the following theorem.

Theorem 1. The impulsive process induced by the Painlevé
paradox will first result in a normal compressional process, and
then immediately bring the relative tangential velocity of the con-
tact point to zero. After that, the tangential motion of the contact
point will stick on the contact surface, while the normal motion of
the contact point will continue to be compressional until the nor-
mal velocity equals zero. Then, an expansion phase in the normal
direction is carried out to make the impact finish.

Proof. We will use Fact 1 for the properties of matrix Q, the
condition for the occurrence of Painlevé paradox, and Coulomb’s
frictional law to prove the property of the tangential impact.

Matrix Q can be thought of as a constant matrix due to the little
change of the configuration in an impulsive process. So the ele-
ments in Q satisfy the following relationships based on Fact 1:

Q22 � 0,Q11 � 0, Q11Q22 � Q21
2

During the slip mode, the condition for the occurrence of Pain-
levé paradox permits us to write that

A = �Q21 + Q22 � 0, − �Q21 � Q22

In the case ẋt�0, we have �=�0�0, so Q21�0. Therefore,

− �Q21Q11 � Q22Q11 � Q21
2

and

��Q11 + Q12� � 0

Similarly, if ẋt�0, we can obtain the following inequality:

��Q11 + Q12� � 0

Thus, these two cases �ẋt�0 and ẋt�0� can be expressed by using
a uniform inequality

ẋt��Q11 + Q12� � 0

The above inequality indicates that the magnitude of the tan-
gential velocity always decreases when the sliding friction is sus-
tained. Since the condition A�0 cannot be removed if the tangen-
tial velocity is not set to zero, the tangential motion of the contact
point must reach the point of slip stopping.

Before slip stops, we can find from the second equation of Eq.
�12� that the contact point will take a normal velocity penetrating
into the contact surface, with an increment for its magnitude �A
�0 and the initial value equal to zero�. Due to the coupling be-
tween the normal and tangential impulses, a compressional pro-
cess in the normal direction is generated once the paradox ap-
pears. Before slip stopping, A�0 is always satisfied, so that the
magnitude of the normal velocity will continue to increase. So the
tangential slip at the contact point stops in the compressional pro-
cess where the normal velocity is not equal to zero.

Once the tangential speed vanishes, the tangential motion might
stick on the contact surface or continue to slip, depending on the
property of dry friction. Setting dẋt=0 in Eq. �11�, one can obtain
the following inequality:
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�dPt/dPn� = �Q12/Q11� � �0

Usually, the static coefficient of friction, �s, is larger than the
sliding coefficient, �0. The above inequality indicates that contact
forces must enter into the interior of the friction cone once the
tangential velocity disappears. So stick should occur at the instant
when the tangential velocity vanishes. During the tangential im-
pact, no other additional impulses are applied on the system. The
stick mode can be preserved until the impulsive process finishes.
Therefore, we can conclude that the relative tangential speed after
tangential impact must equal zero. This well coincides with the
maximum dissipation principle stated in Ref. �11� by Moreau.

Once stick occurs, dPn and dPt cannot be connected linearly by
the coefficient of friction �, and must satisfy the relationship de-
fined by the first equation in Eq. �11� by setting dẋt=0. This rela-
tionship can make the normal velocity of the contact point de-
crease and reach zero. After that, an expansion phase will occur in
order to release the energy accumulated in the compressional
phase. The expansion phase can be governed by an impact law
such as Poisson’s or Stronge’s laws �33�. �

We can summarize the process of the tangential impact as fol-
lows: The friction will first result in a compressional motion in the
normal direction and then bring the relative tangential motion
from slip to stick. Then, sticking motion will persist until the
contact constraint is released. The normal motion at the contact
point will continue to be compressional from the instant of stick
appearance to the time when the normal velocity vanishes.
After that, an expansion phase is carried out to make the impact
terminate.

3.2 Impact Rule for the Tangential Impact. Assigning a
duration �t0 , tf� to the tangential impact, we can split such an
impulsive process into three periods. The first one is a sliding
compressional period denoted as �t0 , t1�, where t1 is related to the
instant of stick appearing. The second one is a sticking compres-
sional period denoted as �t1 , t2�, where t2 corresponds to the in-
stant when the normal velocity vanishes. The third one is a stick-
ing restitution period denoted as �t2 , tf�, which describes the
expansion process of the normal motion, defined by using the
Poisson’s law for normal impact.

Sliding Compressional Period, [t0 , t1]. Let us set ẋt
0 as the ini-

tial speed of slip at t0. At t= t1, the tangential velocity ẋt
1 will be

equal to zero. Thus, the change of the normal impulse can be
obtained by integrating the first equation of Eq. �12� as follows:

Pn
1 = −

ẋt
0

�Q11 + Q12
�13�

By considering the initial value of the normal velocity ẋn
0=0,

we can obtain the normal velocity ẋn
1 at t1 by integrating the sec-

ond equation in Eq. �12� and by using expression �13� as folllows:

ẋn
1 = ��Q21 + Q22�Pn

1 = −
�Q11 + Q12

�Q21 + Q22
ẋt

0 �14�

Sticking Compressional Period, [t1 , t2]. The stick at the contact
point implies the following relationship:

dẋt = 0, dPt/dPn = − �Q12/Q11� �15�
Combining Eq. �15� with the second equation of Eq. �11�, one

can deduce the differential equation for the normal motion in the
stick mode as follows:

dẋn = 	−
Q12

2

Q11
+ Q22
dPn �16�

Due to ẋn
2=0 at the end of this period, we can easily obtain the

change of the normal impulse Pn
2 at t2 as follows:

Pn
2 =

Q11ẋn
1

Q12
2 − Q11Q22

= −
Q11��Q11 + Q12�

�Q12
2 − Q11Q22���Q21 + Q22�

ẋt
0 �17�

Sticking Restitutional Period, [t2 , tf]. This period represents an
expansion process of the normal motion. The expansion impulse
Pn

r can be obtained by using Poisson’s coefficient ep as

ep =
Pn

r

Pn
c

where Pn
c = Pn

1+ Pn
2 is the compressional impulse in the normal

direction. So we have

Pn
r = epPn

c = ep�Pn
1 + Pn

2�

At the beginning of this period, the normal speed ẋn
2=0. Mean-

while, the normal motion during this period will be governed by
Eq. �16� since stick in tangential direction is preserved. Thus, at
the end of this period, the normal speed ẋn

f can be expressed as

ẋn
f = 	−

Q12
2

Q11
+ Q22
Pn

r �18�

Clearly the postimpact velocity in the normal direction, ẋn
f , is

not equal to zero except for ep=0 for the tangential impact with-
out any initial normal velocity. In other words, after the tangential
impact, the contact point will leave the contact surface with a
certain velocity in the normal direction. Nevertheless, the tangen-
tial velocity at the contact point ẋt

f must be equal to zero when the
tangential impact finishes.

By integrating Eq. �4� and neglecting the contribution of the
finite forces, the changes of the generalized velocities of the sys-
tem due to the tangential impact can also be calculated as follows:

���̇1

��̇2

� = M−1K�Pt

Pn
� �19�

where ��̇1 and ��̇2 represent the changes of the generated veloci-
ties, respectively. Pt and Pn are the total impulses in the tangential
and normal directions.

4 Dynamical Behavior Related to the Paradoxical
Situation

In this section, we will present the experimental setup for the
robotic system that corresponds to the analytical model described
in the above section. According to the coefficient of friction esti-
mated from experiments, we will firstly determine the paradoxical
configuration that can make the Painlevé paradox appear. By set-
ting the system with the paradoxical configuration and initially
establishing a contact constraint, we can observe the dynamical
behavior associated with the paradoxical situation. The paradoxi-
cal phenomena will be demonstrated by showing the velocities of
the contact point. The influence of the rail’s speed on the bouncing
motion generated due to the tangential impact will be exhibited. In
addition, how the dynamical behaviors of the robotic system
evolve into a shock from a normal configuration to the singular
one will be demonstrated experimentally, and the stick-slip phe-
nomena appearing in the robotic system will be investigated.

4.1 Description of Experiment. The experimental setup of
the robotic system is formed by using two identical aluminum
cylindrical bars �m=0.12kg , l=0.21m� connected with revolute
joints, see Fig. 2. The upper revolute joint is used to connect the
system with a fixed bracket that contains a slot to make the height
of the system adjustable. A semispherical head made of plastic
material is installed on the contact end in order to make the con-
tact achieve relatively uniform conditions during the motion. The
belt used in the analytical model is replaced by a steel rail, which
moves along the horizonal direction, dragging a rope by hand.

A passive torque is provided by a torsional spring mounted at
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the middle revolute joint. To consider the effects of joint friction,
we use a uniform coefficient c to represent the damping torques
acting on the two identical revolute joints. So the torques �1 and
�2 at the revolute joints can be approximated as

�1 = − c�̇1 �20�

�2 = k��1 − �2 − �0� + c��̇1 − �̇2� �21�

where k is the stiffness of the torsional spring, and �0 is the initial
angle of the spring.

Two laser-Doppler vibrometers �OFV-303-353� with a control-
ler �OFV-3001� are used to measure the rail speed and the velocity
of the contact point, in which laser signals are sent to track the
movements of the sensitive papers attached in the rail and the
contact head. The experimental signals are transferred into a lap-
top through an analog-to-digtal �A\D� card with 10 kHz sample
rate. The sketch of the experimental system is depicted in Fig. 3.

By using a simple slide experiment for the homogenous contact

surface, we estimate the coefficient of friction as �=0.6. Mean-
while, the contact constraint will allow the following geometric
relationship to exist:

l�cos �1 + cos �2� = H

where H is the height of the system �see Fig. 1�, and �1 and �2 are
the angles related to the upper joint and the middle joint,
respectively.

Based on the above relationship and the condition A�0, a
function of �1 with respect to H and � can be obtained for the
occurrence of the Painlevé paradox. For the given coefficient of
friction �=0.6 with a different value of H, Table 1 presents the
allowable scope of �1 for the occurrence of the Painlevé paradox.

Since the paradoxical situations appear under the condition that
the robotic system should be in a paradoxical configuration with
an initial condition of slip, we can release the tip of the system
with an approximately zero height on the moving rail in order to
generate the slip mode. In this case, the absolute value of the
velocity of the tip is equal to zero, such that a relative slip be-
tween the tip and the rail can be established. According to the
property of the tangential impact, the absolute tangential velocity
of the tip should immediately approach the one of the moving rail
if a shock exists. In the following, we will present the experimen-
tal results for the robotic system with different configurations by
changing the joint angles and the height of the system. In particu-
lar, the observation of the stick phenomena associated with the
paradoxical situations will be emphasized.

4.2 Experimental Results. Let us set the robotic system with
a fixed height H=0.3775 m, then repeat experiments for the sys-
tem with joint angle �1 that takes different values among the scope
of �1� �−37 deg,37 deg� �the possible values that can make the
tip of the robotic system touch on the moving rail�. The negative
value of �1 corresponds to the situation where Rod 1 slopes to the
left side against the vertical line passing through the fixed revolute

Fig. 2 The physical model of the experimental setup

La ser

A/D

Computer

Two-link Manupula tor

Fig. 3 The sketch of the experimental system

Table 1 The paradoxical configurations in different heights

The coefficient of friction �=0.6

�1 �deg� None 41.5–48.5 33–42.5 22.7–34.9
H �m� 0.21 0.331 0.35 0.3775
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joint. Table 2 presents the configurations of the system that are
investigated in experiments, in which “Y” represents the para-
doxical configurations, while “N” represents the ones of nonpara-
dox appearing.

Figure 4 shows the experimental curves for the rail’s speed and
the tangential velocity of the contact point for the system with a
paradoxical configuration of �1=32 deg. When the tip touches the
moving rail with zero velocity at t=4.84 s, the first vertical line
shown in Fig. 4 indicates that the tip immediately approaches the
value of the rail speed. This is related to a sticking phenomenon
corresponding to a tangential impact appearing in the paradoxical
configuration. After this event, the tip bounces on the moving rail
and sequential collisions appear at t=4.92 s, 5.02 s, 5.10 s, etc.

We also found from experiments that the magnitude of the
bouncing motion will be significantly influenced by the rail’s
speed. Figure 5 presents the experimental results by setting the
robotic system in the same configuration as in the previous experi-
ments, while the rail’s speed is changed to vt=−0.5 m /s. A tan-
gential impact appears at the measure time t=2.12 s when the tip
touches the rail, and then the subsequent impacts occur at the
instant t=2.21,2.29, . . .. The comparison between Figs. 4 and 5
clearly shows that the magnitude of the tangential velocity is en-
larged due to the increase of the rail’s speed.

If the rail moves slowly, the bouncing motion induced by the
tangential impact will be of low magnitude and even disappear
when the velocity of the rail is lower than a certain threshold.
Figure 6 shows the experimental results for the robotic system
with the same configurations as the previous two experiments,
while setting the rail moving with vt=−0.075 m /s. Clearly after
the tangential impact, the tip of the robotic system will stick on
the moving rail, even though there is a peak in the curve of the
tangential velocity because of the tangential impact.

This phenomenon can be elucidated from the viewpoint of the
system’s energy. According to Eqs. �18� and �19�, the normal and
tangential impulses are proportional to the rail’s speed. So the
robotic system can gain more energy from the tangential impact in
the situation of the rail moving fast. Thus, the sequential collisions
can be enlarged to make the magnitude of the bouncing motion
increase. If the rail moves much more slowly, the robotic system

cannot gain enough energy to overcome the contact force gener-
ated by the gravity and the torsional spring. In this case, the
bouncing motion cannot be observed experimentally.

For the system with the configuration of �1=30.5 deg, the
bouncing motion due to the tangential impact can also be ob-
served by experiments when the rail takes a relatively high speed
�as shown in Fig. 17�. The experimental results related to the two
cases of the system with �1=30.5, 32 deg will be used in the
following section to verify the numerical simulations.

When �1�29 deg, the joint angle �2 will be greater than �1 if
the tip can touch on the rail for the system with height H
=0.3775 m, so that the initial torque of the torsional spring ap-
plied at the middle joint will change its direction and then influ-
ence the dynamical behavior of the system. Figure 7 presents the
experimental results for the system with a paradoxical configura-
tion by setting joint angle �1=25 deg. When contact is estab-
lished, a tangential impact appears at the contact point �the tan-
gential velocity of the tip immediately approaches the one of the
rail�, and then an oscillation for the tangential motion is induced.
However, the contact point does not leave away from the rail
surface after the tangential impact and no bouncing motion can be
observed. The reason for that is because the system with the con-
figurations of �2��1 can only obtain very little energy from the

Table 2 The configurations investigated in experiments

The height H=0.3775 m

�1 �deg� −15 7 15 21 25 30.5 32
Paradox N N N N Y Y Y

4.65 4.70 4.75 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15
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Fig. 4 The relative velocity of the contact point in tangential
direction „H=0.3775 m, �1=32 deg, and vt=−0.16 m/s…
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Fig. 5 The tangential velocity of the contact point „H
=0.3775 m, �1=32 deg, and vt=−0.075 m/s…
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Fig. 6 The tangential velocity of the contact point „H
=0.3775 m, �1=32 deg, and vt=−0.075 m/s…
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tangential impact that is not enough to overcome the effects of the
gravity and the torsional spring. Therefore, the contact point will
stick on the moving rail.

It may be interesting to investigate how the tangential motion at
contact point evolves into a shock by gradually changing the sys-
tem from a normal configuration to a paradoxical configuration.
Figures 8–11 present the experimental results obtained by setting
the system with �1=−15 deg, 7 deg, 15 deg, 21 deg, respectively.
This corresponds to the situation where the initial configuration of
the system gradually approaches the boundary of the singular re-
gion. From the experimental curves �except for the case of �1=
−15 deg�, we can find that friction will decrease the slip velocity
and finally bring the contact point to stick on the moving rail. In
particular, the duration from the beginning of slip to the occur-
rence of sticking becomes shorter when the configuration of the
system is near to the paradoxical situation. If the configuration is
very close to the boundary of the paradoxical region �the case of
�1=21 deg�, the duration for the stop of the relative tangential
motion is about t=0.13 s. Once the configuration of the system
enters into the paradoxical region, the duration for the tangential
motion of the contact point changing from slip to stick will be less
than 0.01 s �as shown for the case of �1=25 deg�, a short time
scale that can be connected with an impact process. The above
experimental phenomena well agree with the mechanism that the
Painlevé paradox is due to the coupling between friction and the

configuration of the system. This further confirms that the dy-
namical behavior of the system in the Painlevé paradox could be
described by a shock.

If the initial configuration is far away from the singular region,
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Fig. 7 The tangential velocity of the tip with H=0.3775 m and
�1=25 deg

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

-0.6

-0.4

-0.2

0.0

0.2

0.4

Rail Velocity

Tangential Velocity of Contact Point

Start Sliding

V
e

lo
ci

tie
s

(m
/s

)

Time (s)

Fig. 8 The tangential velocity of the tip with H=0.3775 m and
�1=−15 deg
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Fig. 9 The tangential velocity of the tip with H=0.3775 m and
�1=7 deg
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Fig. 10 The tangential velocity of the tip with H=0.3775 m and
�1=15 deg
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Fig. 11 The tangential velocity of the tip with H=0.3775 m and
�1=21 deg
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as shown in Fig. 8 for the system with �1=−15 deg and in Fig. 12
for the robotic system with height H=0.25 m, neither sticking
phenomena nor the bouncing motion can be found in the robotic
system.

In some cases, the stick-slip phenomenon is also found in our
experiments. By setting the initial configuration of the system to
H=0.314 m and �1=50 deg, Fig. 13 shows that the friction will
bring the tip into a stick, and then make the slip resume. Such a
process can be repeated to render the robotic system unstable on
the contact surface.

5 Comparison Between Experimental and Numerical
Results

The experimental results presented in the above section have
confirmed that the Painlevé paradox does induce a tangential im-
pact at the contact point, and then makes the robotic system be-
have in a more complex way, with slip phases, stick phases, flight
without contact phases, as well as tangential and normal impacts
with friction. In this section, we will use an event-driven algo-
rithm to perform the numerical simulations.

First, we will carefully estimate the parameters used for the
simulations. According to property of the collision between plastic
and steel materials, the coefficient of the restitution can be set as
ep=0.1. A single pendulum system �shown in Fig. 14 is estab-

lished to obtain its frequency f , and the value of the stiffness of
the torsional spring k can be calculated by using the following
expression:

k =
1

3
ml2�2	f�2 −

l

2
mg �22�

Based on f =4.6 Hz measured from experiments, we have k
=1.3 N m / rad.

Since the damping coefficient c is difficult to obtain from the
experiments, a fitting method is used for its estimation. By setting
c with different values to perform the simulations, we choose the
best one among the different values of c as the damping coeffi-
cient that can make the corresponding numerical simulation better
coincide with the experimental results. According to the numerical
experiments, we find that the change of c limited in the range of
�0.003, 0.007� has little influence on the numerical results. So the
damping coefficient is chosen as c=0.005 N ms / red for the fol-
lowing simulations.

Roughly speaking, the dynamical behaviors of the system are
governed by Eqs. �4� and �5� with the variations of the contact
forces, which depend on the mode of motion at the contact point.
For instance, the contact forces can be set to zero for the flying
mode, while in the case of preserved contact, the contact forces
should be determined by using LCP’s equations and Coulomb’s
friction law. If the paradoxical situations appear in the rigid body
model, the simulation can be continued by setting Eq. �4� with
new initial conditions that can be obtained from the tangential
impact rule expressed in Eqs.�18� and �19�. Similar process is also
carried out for the collisions with friction �21�, in which the
changes of the velocities of the system are obtained by integrating
the impulsive differential equations expressed in Eq.�12�. Since
there are no accumulations of events, event-driven schemes are
well suited to the numerical integration of this nonsmooth system,
see, e.g. Ref. �40�.

Figure 15 presents the comparisons between the experimental
and numerical results by setting the system to the initial configu-
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Fig. 12 The tangential velocity of the tip without the Painlevé
paradox „H=0.25 m and �1=69.4 deg…
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ration of H=0.3775 m and �1=32 deg. It is clear that the model
used in simulation can well reproduce the qualitative behaviors of
the system. The discrepancies appearing in Fig. 10 are partly due
to the unmodeled effects existing in the experimental setup, such
as the vibration of the sensitive papers, the clearances in the revo-
lute joints, and the errors of the physical parameters. Other
sources of discrepancies are the nonuniformity of the rail’s speed
in experiments, since it is assumed to be a constant in the numeri-
cal simulations.

Figure 16 shows the comparisons of the normal velocities be-
tween the experimental and numerical results. The vibration of the
sensitive paper induced by the bouncing motion will much influ-
ence the accuracy of the measurements. Nevertheless, the qualita-
tive behavior of the system can still be captured through the nu-

merical simulations.
Keeping the system with the same height H=0.3775 m as in the

previous case, we can change the initial configuration by adjusting
the joint angle from �1=32 deg to 30.5 deg. The results obtained
from the simulation also agree well with the experimental results
�shown in Fig. 17�.

As mentioned in the above subsection, the phenomenon of
stick-slip motion can be found in experiments even though there is
no paradox appearing. By setting the initial configuration of the
system with H=0.314 m and �1=55 deg, Fig. 18 presents the
curves corresponding to the tangential velocities of the contact
point obtained from simulations and experiments, respectively.
The numerical results indicate that the sticklip is a pure periodic
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Fig. 15 Experimental and numerical results for the tangential speed „H=0.3775 m, �1=32 deg, and vt=
−0.2 m/s…
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motion when the rail speed takes a constant value, but this char-
acteristic will be slightly destroyed due to the nonuniformity of
the rail’s motion.

Summarizing the comparisons between the numerical and ex-
perimental results presented above, we can conclude that the dy-
namical behaviors of the system can be well captured qualitatively
by using the rigid body model. Even in the paradoxical situation,
the simulations can be led by using the tangential impact rule to
reinitialize the dynamical equations. The numerical results show
that such a tangential impact induced by the Painlevé paradox can
be well governed by the impact rule presented in Ref. �28�.

6 Summary and Conclusion
This study mainly developed an experimental setup to demon-

strate the phenomenon of the Painlevé paradox that appears in a
robotic system coming into contact with a moving rail. According
to the experimental results, we have verified that a shock is truly

related to the problem of the Painlevé paradox, and takes a par-
ticular property that a tangential stick appears at the contact point.

Two kinds of instability phenomena for the robotic system are
observed from the experiments. The first one is induced by the
tangential impact, in which the robotic system will bounce or stick
on the moving rail, depending on the value of the rail’s speed. The
other form of the instability is the stick-slip motion, which ap-
pears in the system does not involve the Painlevé paradox.

Based on the careful estimation of the physical parameters, an
event-driven algorithm is used to perform numerical simulations.
By setting the robotic system with paradoxical situations, com-
parisons between the numerical and experimental results are car-
ried out and show good agreement. This illustrates that the rigid
body model can well reproduce the complexly dynamical behav-
iors, and the Painlevé paradox can be overcome by using the
tangential impact rule obtained from the Darboux–Keller’ shock
dynamics. The present work not only provides a basis for the
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Fig. 17 The comparison of the tangential speed between experimental and numerical results „H=0.3775 m,
�1=30.5 deg, and vt=−0.2 m/s…
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theoretical results associated with the problem of the Painlevé
paradox, but also may be useful for the design of feedback con-
trollers in robotic systems.
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Stability and Vibration Behavior
of Composite Cylindrical Shell
Panels Under Axial Compression
and Secondary Loads
The nonlinear static response and vibration behavior of cross-ply laminated cylindrical
shell panels subjected to axial compression combined with other secondary loading are
examined. The shell theory adopted in the present case is based on a higher-order
shallow shell theory, includes geometric imperfection and von Kármán-type geometric
nonlinearity. The solutions to the governing nonlinear partial differential equations are
sought using the multiterm Galerkin technique. The nonlinear equilibrium paths through
limit points and bifurcation points are traced using the Newton–Raphson method coupled
with the Riks approach. The free vibration frequencies of post-buckled cylindrical panels
about the static equilibrium state are reported by solving the associated linear eigenvalue
problem. Results are presented for simply supported cross-ply laminated cylindrical shell
panels, which illustrates the influence of initial geometric imperfection, temperature field,
lateral pressure loads, and mechanical edge loads on the static response and vibration
behavior of the shell panel. �DOI: 10.1115/1.2910772�

Keywords: shell panels, stability, limit points, Galerkin technique, axial compression

Introduction
The changes in the plate and shell panel vibration characteris-

tics due to the interaction of thermal and mechanical loads influ-
ence panel dynamic response and flutter characteristics. The non-
linear equilibrium paths of shell panels are more complex
compared to plates, as there are limit points on the equilibrium
paths of shell panels. A great number of methods have been pro-
posed to trace the snap-through and snap-back portion of equilib-
rium paths. Although the free vibration analyses of pre-buckled
and post-buckled laminated plates and shell panels are important
in the analysis and design of aerospace and spacecraft compo-
nents, the work done in this area is relatively scarce.

Kapania and Yang �1� studied the buckling, post-buckling, and
nonlinear vibrations of perfect and imperfect, isotropic, and lami-
nated thin plates using finite element method. Subsequently, Ka-
pania and Byun �2� studied the vibrations of imperfect laminated
panels under arbitrary in-plane and out-of-plane loads. Yang and
Han �3� studied the buckled plate vibrations and large amplitude
vibrations using high-order triangular elements.

Lee and Lee �4� investigated the vibration behavior of ther-
mally post-buckled anisotropic plates using finite element method.
Illanko �5� studied the vibration and post-buckling of mechani-
cally loaded rectangular plates using a multiterm Galerkin’s
method. Librescu et al. �6,7� presented results of an analytical
study on the vibration behavior of flat and shallow curved panels
subjected to temperature field and mechanical loads. Subse-
quently, Librescu and Lin �8� studied the effects of tangential edge
constraints on the vibrational behavior of doubly curved shallow
panels subjected to thermomechanical loading. In Refs. �6–8�, the
governing equations of the problem were solved using a one-term
Galerkin approximation.

The research on the post-buckling of plates reported in the lit-
erature �see Refs. �9,10,5,11�� shows that the results obtained from

the multiterm Galerkin method differ considerably from that ob-
tained from the one-term solution. Shin et al. �12� examined the
convergence of the series solution �Rayleigh–Ritz method� for the
post-buckling analysis of isotropic and specially orthotropic
graphite-epoxy plates. To the authors’ knowledge, convergence of
the post-buckling results for the case of laminated cylindrical shell
panels using multiterm Galerkin method does not exist in the lit-
erature. Hence, the results presented here are believed to be useful
for comparison in the future.

In the present investigation, analytical results are presented for
the nonlinear stability and free vibration analysis of cross-ply
laminated cylindrical shell panels subjected to mechanical edge
loads in addition to preexisting nondestabilizing lateral pressure
and uniform through-thickness temperature distribution, using a
multiterm Galerkin method. The mechanical edge loads include
uniaxial compressive loads and combinations of uniaxial com-
pressive and transverse compressive or tensile loads. The present
higher-order formulation is based on the displacement field pro-
posed by Reddy and Liu �13�, which accounts for parabolic dis-
tribution of the transverse shear strains through thickness of the
shell and tangential stress-free boundary conditions on the bound-
ary surfaces of the shell. The governing equations of shallow shell
are established using Love’s first-order geometric approximation
and Reissner’s shallow shell simplifications. The dynamic equa-
tions of motion are derived using Hamilton’s principle. By ne-
glecting the inertia terms, the static equations of equilibrium are
obtained. The governing nonlinear partial differential equations
expressed in terms of displacements are solved using a multiterm
Galerkin method. The nonlinear equilibrium paths are traced using
the Newton–Raphson method, in conjunction with the Riks �14�
approach to overcome the limit points. The free vibration frequen-
cies of a post-buckled cylindrical shell panel about a static equi-
librium state are obtained by solving the linear eigenvalue
problem.

Formulation
We consider a doubly curved shell on a rectangular planform of

constant thickness h composed of a finite number of orthotropic
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layers of uniform thickness. The coordinate system is such that the
surface coordinates �x ,y� of the orthogonal coordinate system
�x ,y ,z� are located on the middle surface of the laminate, and are
coincident with the lines of principal curvature; the z coordinate is
normal to the middle plane; Rx and Ry are the principal radii of
curvature of the middle surface.

The present higher-order theory is based on a displacement
field, in which the displacements of the middle surface are ex-
panded as cubic functions of the thickness coordinate, and the
transverse displacement is assumed to be constant through the
thickness. The latter assumption is equivalent to neglecting
stretching of normal to the middle surface of the shell. The addi-
tional dependent unknowns introduced with the quadratic and cu-
bic powers of the thickness coordinate are evaluated in terms of
the derivatives of the transverse displacement and the rotations of
the normals at the middle surface. This displacement field leads to
the parabolic distribution of the transverse shear stress �and zero
transverse normal strain�, and therefore no shear correction factors
are required. The terms classical shell theory �CST� and first-order
shear deformation theory �FSDT� are not described in the present
formulation. However, the displacement fields appropriate to CST
and FSDT can be easily obtained from the present displacement
field. The details are not furnished for the sake of brevity.

The displacement fields used in the present study are �Reddy
and Liu �13��

u = �1 + z/Rx�u0 + z�1 + z3�4/3h2��− �1 − w,x
0 �

v = �1 + z/Ry�v0 + z�2 + z3�4/3h2��− �2 − w,y
0 �

w = w0 �1�

Here, u, v, and w are displacement components, respectively,
along the x, y, and z directions; u0, v0, w0 are the displacements of
a generic point on the midplane; and �1 and �2 are the rotations of
the cross sections perpendicular to the x and y axes, respectively.

In the present theory, the governing equations of shallow shell
are established using Love’s first-order geometric approximation
�neglecting z /Rx and z /Ry in comparison with unity� and Reiss-
ner’s shallow shell simplifications �Kraus �15��, which are identi-
cal to Donnell’s assumptions for cylindrical shells �i.e. �i� the
transverse shearing force makes a negligible contribution to the
equilibrium of forces in the circumferential direction and �ii� ne-
glecting the tangential displacements and their derivatives for the
midsurface changes in curvature and twist.� The above displace-
ment fields can be rearranged as �Soldatos �16��

u = �1 + z/Rx�u0 − zw,x
0 + f�z��1,

v = �1 + z/Ry�v0 − zw,y
0 + f�z��2, w = w0 �2�

where

�1 = �1 + w,x
0 , �2 = �2 + w,y

0 , f�z� = z�1 − �4/3��z/h�2�

The introduction of f�z� in the displacement field reduces cer-
tain higher-order moment and transverse shear force resultants.
These are due to the particular form of the proposed displacement
field. It is apparent that the unknown functions �1 ��1+w,x

0 � and
�2 ��2+w,y

0 � represent the action of transverse shear strains on the

shell middle surface. This action, by means of the first partial
derivatives of �1 and �2, gives rise to some additional changes of
curvature, �1,x and �2,y, and twist ��2,x+�1,y�, of the shell middle
surface.

The nonlinear strain-displacement relations at a distance z away
from the midplane of a shallow shell can be written as

�x = �x
0 − zw,xx

0 + f�z��1,x

�y = �y
0 − zw,yy

0 + f�z��2,y

�xy = �xy
0 − 2zw,xy

0 + f�z��1,y + f�z��2,x

�xz = u,z + w,x = f��z��1

�yz = v,z + w,y = f��z��2 �3�

where �x
0, �y

0, and �xy
0 are reference surface strains and are defined

as

�x
0 = u,x

0 +
w0

Rx
+

1

2
�w,x

0 �2

�y
0 = v,y

0 +
w0

Ry
+

1

2
�w,y

0 �2

�xy
0 = u,y

0 + v,x
0 + w,x

0 w,y
0

For a slightly imperfect shell, let w* denote a known small
geometric imperfection, i.e., a small deviation of the shell middle
surface from the midplane of a perfect shell. The unloaded imper-
fect shell is assumed to be stress-free. In the case of imperfect
shell, w0 is measured from the load-free imperfect middle surface.
The geometric imperfection of a simply supported shell based on
fundamental buckling mode of a geometrically perfect shell is
assumed as

w* = e sin
�x

a
sin

�y

b
�4�

The coefficient e represents the amplitude of the initial imperfec-
tion. The initial strains due to the imperfection can be written as

�
x
* = 1

2 �w
,x
*�2, �

y
* = 1

2 �w
,y
*�2, �

xy
* = w

,x
*w

,y
*

�
xz
* = w

,x
*, �

yz
* = w

,y
* �5�

The net strain component in the middle surface of the imperfect
shell becomes �small angles of rotation w,x

0 in the equations for an
initially perfect shell are replaced by �w0+w*�,x�

�̄x
0 = u,x

0 +
w0

Rx
+

1

2
��w0 + w*�,x

2 � − �
x
* = ��x

0 + w,x
0 w

,x
*�

�̄y
0 = v,y

0 +
w0

Ry
+

1

2
��w0 + w*�,y

2 � − �
y
* = ��y

0 + w,y
0 w

,y
*�

�̄xy
0 = u,y

0 + v,x
0 + ��w0 + w*�,x�w0 + w*�,y� − �

xy
*

= ��xy
0 + w,x

0 w
,y
* + w

,x
*w,y

0 � �6�

Introducing Eq. �6� into Eq. �3� �i.e., replacing �x
0 , �y

0, and �xy
0

with �̄x
0 , �̄y

0 and �̄xy
0 �, the strain components of the imperfect shell

are written as

�x = �x
0 + w,x

0 w
,x
* − zw,xx

0 + f�z��1,x

�y = �y
0 + w,y

0 w
,y
* − zw,yy

0 + f�z��2,y

�xy = �xy
0 + w,x

0 w
,y
* + w

,x
*w,y

0 − 2zw,xy
0 + f�z��1,y + f�z��2,x

�xz = u,z + w,x = f��z��1

�yz = v,z + w,y = f��z��2 �7�

The stress strain relations for the kth lamina are given by
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�
�x

�y

�yz

�xz

�xy

�
�k�

= �
Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q44 0 0

0 0 0 Q55 0

0 0 0 0 Q66

�
�k�

�
�x − �1

�k�T

�y − �2
�k�T

�yz

�xz

�xy

�
�8�

where Qij
�k� are the material constants of the kth lamina in the

laminate coordinate system and �1
�k� and �2

�k� are the coefficients of
linear thermal expansion for layer k in the laminate coordinates; T
denotes temperature rise in the laminate.

The equations of motion appropriate to the displacement field
�2� and constitutive equations �8� can be derived using Hamilton’s
principle. Neglecting both tangential and rotary inertia terms, the
principle can be stated as

	
0

t 
	
−h/2

h/2 �	
�

�k�

��x��x
�k� + �y��y

�k� + �xy��xy
�k� + �xz��xz

�k�

+ �yz��yz
�k��dxdy�dz
dt −	

0

t 
	
�

q�w0dxdy
dt

−	
0

t 
�	
−h/2

h/2 �	
�

�k�

	�w,t�2dxdy�dz
dt = 0 �9�

The stress resultants can be defined as

�� Nx

Ny

Nxy
�,� Mx

My

Mxy
�,� Px

Py

Pxy
�� =	

−h/2

h/2 � �x

�y

�xy
��1,z, f�z��dz �10�

and

�Vxz,Vyz� =	
−h/2

h/2

��xz,�yz�f��z�dz where f��z� =
d

dz
f�z�

where f��z�=d /dzf�z� where Nx, Ny, and Nxy, and Mx, My, and
Mxy are the force and moment resultants; Px, Py, and Pxy are
additional moment resultants due to additional changes of curva-
ture �1,x, �2,y, ��2,x+�1,y�; Vxz and Vyz are transverse shear force
resultants.

For uniform through-thickness temperature distribution, the
thermal forces and moments are defined by

�Nx
T Mx

T Px
T

Ny
T My

T Py
T � = �

k=1

N 	
zk−1

zk 
Q11 Q12

Q12 Q22

��1

�2
��1,z, f�z��Tdz

�11�
The equations of motion of the shell derived from Hamilton’s

principle �9� can be written as �Soldatos �16��

Nx,x + Nxy,y = 0

Nxy,x + Ny,y = 0

Mx,xx + 2Mxy,xy + My,yy − �Nx/Rx� − �Ny/Ry� + Nxw,xx + 2Nxyw,xy

+ Ny,w,yy + q = 	hw,tt
0

Px,x + Pxy,y − Vxz = 0

Pxy,x + Py,y − Vyz = 0 �12�

where � �,x denotes partial differentiation with respect to x; q is the
distributed transverse load; and 	 is the mass per unit area of the
shell. Expressing the stress resultants in terms of displacements in
Eq. �12�, the governing equilibrium equations are obtained in dis-
placement variables and are given in the Appendix.

Solution Procedure

Nonlinear Static Response. Let a and b denote lengths of a
cylindrical shell panel �Rx=
 ,Ry =R� along x and y directions,
respectively �see Fig. 1�. It is assumed that the cylindrical shell
considered is subjected to the following set of simply supported
boundary conditions:

Nx = v0 = w0 = Px = �2 = Mx = 0 at x = 0,a

u0 = Ny = w0 = �1 = Py = My = 0 at y = 0,b �13�
The displacement fields appropriate to simply supported bound-

ary conditions are represented as

u = �
m=1

i

�
n=1

j

Umn cos�m�x

a
�sin�n�y

b
� ,

�1 = �
m=1

i

�
n=1

j

�mn cos�m�x

a
�sin�n�y

b
�

v = �
m=1

i

�
n=1

j

Vmn sin�m�x

a
�cos�n�y

b
� ,

�2 = �
m=1

i

�
n=1

j

�mn sin�m�x

a
�cos�n�y

b
�

w = �
m=1

i

�
n=1

j

Wmn sin�m�x

a
�sin�n�y

b
� �14�

where i and j denote the number of modes/terms associated with x
and y directions in the multiterm Galerkin’s method. Applying
Galerkin’s procedure, one obtains a system of nonlinear algebraic
equations in constant coefficients Umn, Vmn, Wmn, �mn, and �mn.
The critical buckling loads are obtained from the solution of the
linear eigenvalue problem. Using the Newton–Raphson method in
conjuction with the Riks approach, the system of nonlinear alge-
braic equations is solved for deflections. The nonlinear algebraic
equations based on the multiterm Galerkin procedure are not pre-
sented for the sake of brevity.

Small Amplitude Vibration About a Static Equilibrium
State. For the free vibration analysis about a static equilibrium
state, the unknown modal amplitudes are assumed to be the sum
of time-independent and time-dependent solutions, which may be
written as

Fig. 1 Geometry of cylindrical shell panel
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�w� = �ws� + �wt� �15�

where �ws� is the static deflection and �wt� is the dynamic deflec-
tion about a static equilibrium state. In the case of small amplitude
vibration �wt�2� �ws�, hence-higher order time-dependent terms
are neglected. Substituting the displacement field �Eq. �14�� into
the governing partial differential equations �see the Appendix� and
adopting Galerkin’s technique, we obtain a set of ordinary differ-
ential equations. The equation of motion may be written as

��M��ẅt� + �K� + �N���wt� = 0 �16�

where �M� is the mass matrix, �K� is the linear elastic stiffness,
and �N� is the nonlinear stiffness due to large deformation. The
nonlinear stiffness matrix �N� is a function of only time-
independent amplitude �large deformation�. For the free vibration
analysis at frequency 
, the following one-harmonic approxima-
tion is assumed to solve the ordinary differential equations �16�:

�wt� = �w̃t�sin 
t �17�
In the analysis, the tangential and rotary inertia terms are ne-

glected and consequently the in-plane displacements become a
function of sin2 
t. Now, condensing the equations of motion, the
standard eigenvalue problem is obtained. By substituting the con-
verged static deflection values obtained from the nonlinear static
analysis, the free vibration frequencies are obtained by solving the
linear eigenvalue problem.

Results and Discussion
Numerical results are presented for simply supported, cross-ply

cylindrical shell panels �Rx=
 ,Ry =R�. The following lamina ma-
terial properties are used �Reddy and Liu �13�� in the analysis:

E1 = 25E2, G12 = G13 = 0.5E2, G23 = 0.2E2,

�12 = 0.25, �2/�1 = 3, a/b = 1

To validate the present formulation, the nondimensional center
deflections of �0 /90� antisymmetric cross-ply cylindrical shells
subjected to sinusoidal temperature distributed load are compared
in Table 1 with that of Khdeir et al. �17� for various radius-to-span
ratios. It is observed that the results agree very well.

Table 2 presents the influence of shear deformation on the
variation of dimensionless critical buckling loads �N

x
*� versus

side-to-thickness ratio �a /h� for �0 /90� and �0 /90 /0� cross-ply
cylindrical shell panels subjected to in-plane uniform edge com-
pression in the x direction. It can be seen that the CST overpre-
dicts the buckling loads as compared to the FSDT and higher-
order shear deformation theory �HSDT�. The difference between
the solutions predicted by FSDT and HSDT is not significant.
Moreover, due to the coupling between bending and extension, the
influence of shear deformation is less effective in the case of
antisymmetric �0 /90� cross-ply shell panel in comparison with
symmetric cross-ply shell panel �0 /90 /0�.

Figure 2 shows the post-buckled equilibrium paths of a three-
layered �0 /90 /0� symmetric cross-ply cylindrical shell panel un-

Table 1 Nondimensional center deflections of †0/90‡ cross-ply
laminated cylindrical shells subjected to sinusoidal tempera-
ture distribution „a /b=1, a /h=10, Rx=�, Ry=R… w̄
= „wh /�1Tb2

…Ã10

R /a

Present Khdeir et al. �1992�

CST HSDT CST HSDT

5 1.1280 1.1235 1.1280 1.1235
10 1.1447 1.1421 1.1447 1.1421
25 1.1494 1.1475
50 1.1501 1.1482 1.1501 1.1482
75 1.1502 1.1484
100 1.1503 1.1484
Plate 1.1504 1.1485 1.1504 1.1485

Table 2 Critical buckling coefficients of cross-ply laminated
cylindrical shells subjected to uniaxial compression „a /b=1,
Rx=�, Ry /a=10… N

x
*=Nxcra2 /100h3E2

a /h

�0 /90 /0� �0 /90�

CST FSDTa HSDT CST FSDTa HSDT

5 0.2351 0.0768 0.0704 0.0954 0.0577 0.0609
10 0.2354 0.1519 0.1427 0.0957 0.0824 0.0838
20 0.2368 0.2078 0.2029 0.0971 0.0934 0.0938
30 0.2391 0.2252 0.2226 0.0995 0.0978 0.0980
40 0.2424 0.2344 0.2328 0.1028 0.1018 0.1020
50 0.2467 0.2414 0.2404 0.1070 0.1064 0.1065
75 0.2610 0.2589 0.2584 0.1215 0.1213 0.1212
100 0.2837 0.2804 0.2801 0.1416 0.1422 0.1415

aShear correction factor=5 /6.

Fig. 2 Comparison of one-term, three-term and four-term solutions for the
post-buckling behavior of a composite cylindrical shell panel †0/90/0‡ un-
der uniaxial edge compression
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der uniaxial edge compression. The nondimensional axial load
�N*=Nx /Nxcr� is shown in the figure against nondimensional out-
of-plane displacement �w /h� at the center of the panel. The panels
have a radius-to-span ratio Ry /a=10 and a length-to-thickness
ratio a /h=10 and are square �a /b=1� in planform. The equilib-
rium paths are traced by taking one-term �m=n=1�, three-term
��m=n=1�, �m=1,n=3�, �m=3,n=1��, and four-term ��m=n=1�,
�m=1,n=3�, �m=3,n=1�, �m=n=3�� in the displacement fields
�see Eq. �14��. It can be seen that the three-term and four-term
solutions compare well. However, the discrepancy between the
one-term and three-term results is noticeable. At a load level N*

=2, the difference in the central deflections as calculated by con-
sidering one-term and three-term solutions is 12.11%, whereas at
N*=3, the difference is 22.45%, whereas the difference between
three-term and four-term solutions is less than 1%. Thus, three
terms are sufficient to obtain accurate results for the problem un-
der consideration.

The post-buckled equilibrium paths for flat and curved panels
are significantly different. Flat panels exhibit a stable-symmetric
point of bifurcation, whereas curved panels exhibit an unstable-
asymmetric point of bifurcation �Figs. 3, 4, 8, 10, and 12, 8, 10,
and 12�. In these figures, after the bifurcation point, for positive
�inward� out-of-plane displacements, the load carrying capacity of

the shell panels initially decreases due to decrease in curvature of
the deformed panel. After flattening, the deformed surface begins
to develop more curvature, which results in an increase of load. In
the snap-through region, the panel changes its equilibrium con-
figuration from unstable equilibrium path to stable equilibrium
path. For the curves shown in Fig. 2, with a radius-to-span ratio
Ry /a=10 and a length-to-thickness ratio a /h=10, the asymmetric
post-buckling response is not visible. This is due to the fact that
the intensity of the snap-through response of a shell panel depends
on the radius-to-span and length-to-thickness ratios. However, the
asymmetric point of bifurcation is clearly visible in Figs. 3 and 4,
8, 10, and 12.

The influence of initial geometric imperfections on the post-
buckled equilibrium paths of �0 /90 /0� symmetric cross-ply shell
panel subjected to in-plane uniform edge compression �Nx� is
shown in Fig. 3. The panels have a radius-to-span ratio �Ry /a� of
5 and length-to-thickness ratio �a /h� of 50 and are square in plan-
form �a=b�. Positive values of e correspond to the amplitude of
imperfections that are toward the center of curvature of a point on
a panel, and the value e=0 corresponds to a geometrically perfect
panel. It can be seen that due to the presence of both positive and
negative initial imperfections, bifurcation buckling does not take
place. For initial positive �inward� imperfections �e� of 0.01h and

Fig. 3 The influence of initial geometric imperfections on the post-buckling
behavior of composite cylindrical shell panel under uniaxial edge
compression

Fig. 4 The influence of shear deformation on the post-buckling behavior of
composite cylindrical shell panel under uniaxial edge compression
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0.02h, the equilibrium path shows limit point and snap-through
behavior and for higher values of imperfection �0.03h–0.05h�, the
equilibrium paths do not show snap-through behavior. However,
for the negative �outward� imperfections �−0.01h to −0.05h�, the
equilibrium paths show a hardening type behavior.

The effect of shear deformation on the post-buckling behavior
of a three-layered �0 /90 /0� symmetric cross-ply shell panel
�Ry /a=2, a /h=10� subjected to in-plane uniaxial compressive
load is shown in Fig. 4. The curves are shown for various values
of transverse-shear flexibility E1 /G23=0, 10, 25, 50, and 125. The
in-plane compressive loads shown in the figure are normalized
with critical buckling load of a shell panel with E1 /G23=125. The
transverse-shear flexibility E1 /G23=0 corresponds to a shell panel
that has no transverse-shear flexibility �CST�. It is evident from
the figure that, as the value of E1 /G23 increases, the critical buck-
ling load decreases and the post-buckled equilibrium paths are
unsymmetrical with respect to bifurcation points. For positive �in-
ward� displacements of the shell panel, the equilibrium paths
show snap-through behavior, whereas for negative �outward� dis-
placements of the shell panel, the equilibrium path follows stable
equilibrium path.

Figure 5 shows the influence of transverse shear �E1 /G23� on
the fundamental frequencies of a symmetric cross-ply shell panel
�Ry /a=2, a /h=10� subjected to uniaxial compressive edge load.
The frequencies are normalized with the fundamental frequency

of a shell panel with E1 /G23=125. It can be seen that upon in-
creasing the compressive load �N*�, the frequencies start decreas-
ing and reaches zero value at critical buckling load. The bifurca-
tion point shown on the abscissa corresponds to the buckling load
of a static equilibrium path �see Fig. 4� and the imaginary frequen-
cies below the abscissa correspond to unstable �snap-through be-
havior� equilibrium path of the shell. In the snap-through region,
the shell changes its equilibrium configuration from unstable equi-
librium path to stable equilibrium path. Therefore, on the stable
equilibrium path, the fundamental frequencies increase with the
increase of compressive load.

The influence of span-to-thickness ratio �a /h� on the nonlinear
behavior of a symmetric cross-ply shell panel subjected to uni-
form lateral pressure �q*� is shown in Fig. 6. It is observed that,
with the increase of a /h �70, 80, and 90�, the shell panel exhibits
snap-through behavior. Figure 7 shows the fundamental frequen-
cies, which correspond to the static equilibrium paths shown in
Fig. 6. The fundamental frequencies shown in the figure are nor-
malized with the natural frequency of the shell panel with a /h
=50. It can be seen that the increase in a /h ratio decreases the
fundamental frequencies. The imaginary frequencies shown in the
figure below the abscissa for a /h=70, 80, and 90 correspond to
the limit point instability behavior of the respective shell panels.

Figure 8 shows the post-buckled equilibrium paths of a sym-
metric cross-ply shell panel, for load interaction between the me-

Fig. 5 The influence of shear deformation on the fundamental frequencies
of composite cylindrical shell panel under uniaxial edge compression

Fig. 6 The influence of span-to-thickness ratio on the nonlinear behavior of
cross-ply cylindrical shell panel under uniform lateral pressure
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chanical edge loads Nx and Ny. The load ratio N0 �Ny /Nx� is the
ratio of compressive �positive� or tensile �negative� edge load in
the y direction ��Ny� and compressive edge load in the x direc-
tion �Nx�, respectively. For uniaxial edge compression �N0=0�, the
post-buckling path shows bifurcation buckling and snap-through
behavior, whereas, for biaxial �N0� edge loading bifurcation,
buckling does not takes place. It can be seen that for negative load
ratio N0=−0.02, the equilibrium path shows the limit point and
with the increase of load ratio �N0=−0.1,−0.2�, the curves follow
the stable equilibrium path. For positive load ratio �N0=0.02, 0.1,
0.2�, the shell panel begins with negative displacements �outward�
and the curves follow stable equilibrium paths.

The influence of biaxial mechanical edge load on the funda-
mental frequencies of a symmetric cross-ply shell panel �Ry /a
=5, a /h=50� is shown in Fig. 9. The bifurcation point shown on
the abscissa �N0=0� corresponds to critical buckling load of a
shell panel. For N0=− 0.02, the frequencies show a limit point on
the abscissa, as the panel snaps through into another stable equi-
librium configuration. In general, the fundamental frequency de-
creases with increase of load due to decrease in panel curvature of
the deformed shell. After flattening, the deformed surface begins
to develop more curvature, which results in increase of fundamen-
tal frequency.

Figure 10 shows the influence of uniform lateral pressure and
biaxial edge load on the post-buckling behavior of symmetric

cross-ply shell panel. In this study, the lateral pressure is kept
constant, whereas the edge load is varied. It can be observed that
the initial �N*=0� positive �inward� and negative �outward� de-
flections of the panel are due to positive and negative lateral pres-
sures, respectively. For the case q*=0.2, N0=0.2, the results show
that as soon as mechanical edge load is applied, the positive de-
flection decreases and with the increase of mechanical edge load
the displacements transit to negative deflection. Whereas, for q*

=0.2, N0=−0.2, the initial positive deflection increases monotoni-
cally with the increase of edge load, the shell panel shows a stiff-
ening behavior. In the case of q*=−0.2, N0=−0.2, the initial nega-
tive deflection transit to positive deflection. However, for
q*=−0.2, N0=−0.1, the shell panel exhibits a limit point instabil-
ity response. For the case q*=−0.2, N0=0.2, the initial negative
deflection increases monotonically with the increase of edge load.

The frequency results presented in Fig. 11 correspond to the
static equilibrium paths shown in Fig. 10. The decrease in the
fundamental frequency is due to flattening of deformed surface.
After flattening, the deformed surface begins to develop curvature,
as a result the fundamental frequency increases with the increase
of bending stiffness. The bifurcation point shown in the figure
corresponds to critical buckling load of a uniaxially compressed
shell.

The influence of uniform through-thickness temperature distri-

Fig. 7 The influence of span-to-thickness ratio on the fundamental fre-
quencies of symmetric cross-ply cylindrical shell panel under uniform lat-
eral pressure

Fig. 8 The influence of biaxial edge load on the post-buckling behavior of
symmetric cross-ply cylindrical shell panel
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bution and biaxial edge load on post-buckling behavior of sym-
metric cross-ply shell panel is shown in Fig. 12. In this study, the
temperature is kept constant, whereas the mechanical edge load is
varied. In this figure, positive sign represents rise in the tempera-
ture and negative sign represents fall in the temperature. The ini-
tial �N*=0� negative displacements and positive displacements

correspond to the rise �T*=2.5� and fall �T*=−2.5� in the tem-
perature, respectively. It can be seen that the initial rise or fall in
the temperature acts as a load imperfection and hence bifurcation
buckling does not take place. It is observed that for the case T*

=2.5, N0=−0.2, the results show that as soon as mechanical edge

Fig. 9 The influence of biaxial edge load on the fundamental frequencies of
cross-ply cylindrical shell panel

Fig. 10 The influence of uniform lateral pressure and bi axial edge load on
post-buckling behavior of cross-ply cylindrical shell panel

Fig. 11 The influence of uniform lateral pressure and biaxial edge load on
fundamental frequencies of cross-ply cylindrical shell panel
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load is applied, the negative deflection decreases and with the
increase of mechanical edge load the displacements transit to
positive deflection. These results also indicate limit point instabil-
ity response of the shell panel. Whereas, for T*=2.5, N0=0.2, the
initial negative deflection increases monotonically with the in-
crease of edge load. In case of T*=−2.5, N0=0.2, the initial posi-
tive deflection transits to negative deflection. For the case T*

=−2.5, N0=−0.2, the initial positive deflection increases mono-
tonically with the increase of edge load. In general, the static
response of the shell panel is sensitive to the sign of the lateral
pressure and edge loading.

Figure 13 shows the fundamental frequencies, which corre-
spond to the static equilibrium paths shown in Fig. 12. The fun-
damental frequencies are normalized with the natural frequency of
the shell panel. It can be seen that for positive temperature, the
curvature of the shell panel increases and results in high natural
frequencies. Whereas, for negative temperature, the curvature of
the shell panel decreases and results in low natural frequencies.
With the increase of egde load �N*�, the fundamental frequencies
of the shell decrease and exhibit limit point on the abscissa, �T*

=2.5,N0=−0.2�, which corresponds to the limit point instability
of static equilibrium path. In general, the fundamental frequencies
of the shell panel are sensitive to the sign of the temperature and
edge loading.

Conclusions
The multiterm Galerkin method is used to obtain analytical so-

lutions for the nonlinear static response and free vibration behav-
ior of simply supported cross-ply laminated cylindrical shell pan-
els, based on the higher-order transverse shear deformation theory.
It is observed from results that the multiterm Galerkin method
gives better results than the single-term solution. Numerical re-
sults of a parametric study of the nonlinear static response and
vibration behavior of curved panels subjected to thermomechani-
cal loads are presented. When the cylindrical panel is subjected to
uniaxial compression in the x direction, the post-buckled equilib-
rium path is asymmetric about the bifurcation point and the panel
is sensitive to the magnitude and direction of the initial geometric
imperfections, lateral load, temperature field, and edge load in the
y direction. It can be concluded that, by suitably adjusting the
geometric parameters and loading conditions, beneficial results
can be obtained. The analytical results reported in this paper using
the multiterm Galerkin method serve as a basis for comparison
and verification of results obtained from other numerical methods.

Nomenclature
The various notations and symbols used in the text or in the fig-
ures have been enlisted below for ease of reference. Symbols not

Fig. 12 The influence of uniform through-thickness temperature and biax-
ial edge load on post-buckling behavior of cross-ply cylindrical shell panel

Fig. 13 The influence of uniform through-thickness temperature and biax-
ial edge load on fundamental frequencies of cross-ply cylindrical shell panel
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contained in the list have been explained in the sections when they
appear first.

E1, E2 � longitudinal and transverse Young’s moduli,
respectively

G12, G13, G23 � shear moduli
Nxcr � critical buckling load of the shell

T � sinusoidal temperature distribution
�T0 sin��x /a�sin ��y /b��

a, b � planform dimension of the shell
h � thickness of the cylindrical shell panel

m, n � positive odd integers
a /h � span-to-thickness ratio

w /h � central displacement-to-thickness ratio
Ry /a � radius-to-span ratio

N* � nondimensional uniaxial edge compression
in the x direction �Nx /Nxcr�

q � uniform lateral pressure
q* � nondimensional distributed load parameter

�qa4 /E2h4�102

T* � nondimensional temperature distribution
�TR�1 /h�102


0 � natural frequency of the shell panel

̄ � nondimensional frequency �
 /
0�

Appendix: Governing Nonlinear Partial Differential Equations

A11u,xx
0 + A66u,yy

0 + �A12 + A66�v,xy
0 + �A11/Rx + A12/Ry�w,x

0 − �B11w,xxx
0 + �B12 + 2B66�wxyy

0 � + �C11�1,xx + C66�1,yy� + �C12 + C66��2,xy

+ �A11�w,xx
0 + w

,xx
* � + A66�w,yy

0 + w
,yy
* ��w,x

0 + �A11w,xx
0 + A66w,yy

0 �w
,x
* + �A12 + A66��w,y

0 w,xy
0 + w,y

0 w
,xy
* + w

,y
*w,xy

0 � = 0 �A1�

�A12 + A66�u,xy
0 + A66v,xx

0 + A22v,yy
0 + �A12/Rx + A22/Ry�w,y

0 − B22wyyy
0 − �B12 + 2B66�wxxy

0 + �C12 + C66��1,xy + �C22�2,yy + C66�1,xx�

+ �A66�w,xx
0 + w

,xx
* � + A22�w,yy

0 + w
,yy
* ��w,y

0 + �A66w,xx
0 + A22w,yy

0 �w
,y
* + �A12 + A66��w,x

0 w,xy
0 + w,x

0 w
,xy
* + w

,x
*w,xy

0 � = 0 �A2�

B11u,xxx
0 + �B12 + 2B66�u,xyy

0 + �B12 + 2B66�v,xxy
0 + B22v,yyy

0 + 2�B11/Rx + B12/Ry�w,xx
0 + 2�B12/Rx + B22/Ry�w,yy

0 + �B11w,xxx
0 + �B12

+ 2B66�w,xyy
0 �w,x

0 + �B22w,yyy
0 + �B12 + 2B66�w,xxy

0 �w,y
0 + 2B12�w,xy

0 �2 − 2B12w,xx
0 w,yy

0 − 2B66�w,xy
0 �2 + 2B66w,xx

0 w,yy
0 + E11�1,xxx + �E12

+ 2E66��1,xyy + E22�2,yyy + �E12 + 2E66��2,xxy − �C11/Rx + C12/Ry��1,x − �C12/Rx + C22/Ry��2,y + �C11w,xx
0 + C12w,yy

0 ��1,x

+ 2C66w,xy
0 �1,y + �C12w,xx

0 + C22w,yy
0 ��2,y + 2C66w,xy

0 �2,x − �D11w,xxxx
0 + 2�D12 + 2D66�w,xxyy

0 + D22w,yyyy
0 � + E11�1,xxx + �E12

+ 2E66���1,xyy + �2,xxy� + E22�2,yyy − 1/Rx�A11�u,x
0 + w0/Rx + 0.5�w,x

0 �2 + w,x
0 w

,x
*� + A12�v,y

0 + w0/Ry + 0.5�w,y
0 �2 + w,y

0 w
,y
*��

− 1/Ry�A12�u,x
0 + w0/Rx + 0.5�w,x

0 �2 + w,x
0 w

,x
*� + A22�v,y

0 + w0/Ry + 0.5�w,y
0 �2 + w,y

0 w
,y
*�� + ��A11�u,x

0 + w0/Rx + 0.5�w,x
0 �2 + w,x

0 w
,x
*�

+ A12�v,y
0 + w0/Ry + 0.5�w,y

0 �2 + w,y
0 w

,y
*�� − Nx��w,xx

0 + w
,xx
* � + �2�A66�u,y

0 + v,x
0 + w,x

0 w,y
0 + w,x

0 w
,y
* + w

,x
*w,y

0 � − Nxy���w,xy
0 + w

,xy
* �

+ ��A12�u,x
0 + w0/Rx + 0.5�w,x

0 �2 + w,x
0 w

,x
*� + A22�v,y

0 + w0/Ry + 0.5�w,y
0 �2 + w,y

0 w
,y
*�� − Ny��w,yy

0 + w
,yy
* � = 0 �A3�

�C11u,xx
0 + C66u,yy

0 � + �C12 + C66�v,xy
0 + �C11/Rx + C12/Ry�w,x

0 + �C11w,xx
0 + C66w,yy

0 �w,x
0 + �C12 + C66�w,y

0 w,xy
0 − E11w,xxx

0 − �E12 + 2E66�w,xyy
0

+ F11�1,xx + F66�1,yy + �F12 + F66��2,xy − H55�1 = 0 �A4�

�C12 + C66�u,xy
0 + �C22v,yy

0 + C66v,xx
0 � + �C12/Rx + C22/Ry�w,y

0 + �C12 + C66�w,x
0 w,xy

0 + �C22w,yy
0 + C66w,xx

0 �w,y
0 − E22w,yyy

0 − �E12 + 2E66�w,xxy
0

+ F66�2,xx + F22�2,yy + �F12 + F66��1,xy − H44�2 = 0 �A5�
where

�Aij,Bij,Dij� =	
−h/2

h/2

Qij�1,z,z2�dz, �Cij,Eij,Fij� =	
−h/2

h/2

Qij�1,z, f�z��f�z�dz for i, j = 1,2,6,

�Hij� =	
−h/2

h/2

Qij�f��z��f��z�dz for i, j = 4,5
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Vibration Analysis of a Floating
Roof Taking Into Account the
Nonlinearity of Sloshing
The vibration of a floating roof hydroelastically coupled with nonlinear sloshing is ana-
lyzed. Influences of the nonlinearity of sloshing on the magnitude of stresses arising in a
floating roof are investigated. Numerical results show that (i) neglecting the nonlinearity
of sloshing significantly underestimates the magnitude of the stresses, even when the
nonlinear effect is small for the roof displacement; and (ii) the underestimation associ-
ated with the use of the linear approximation becomes more marked with the decrease in
the liquid depth. The reasons for these results are explained based on the fact that in the
nonlinear sloshing, the modal component with circumferential wave number 2 is
excited. �DOI: 10.1115/1.2912739�

1 Introduction
Over the past few decades, extensive studies have been con-

ducted in the area of sloshing �1,2�. There are a number of inves-
tigations concerned especially with hydroelastic vibrations caused
by sloshing �3–11� and nonlinear response behaviors of the system
�6–11�. One feature of conventional works is that they considered
sloshing with a free liquid surface. Studies for the case in which a
liquid surface is covered with a floating roof are relatively scarce.
However, for large ground-supported liquid storage tanks, floating
roofs are widely used to protect the internal liquid from atmo-
sphere. The oscillatory motion of a floating roof coupled with the
liquid sloshing is near resonance with low-frequency components
of earthquake ground motions, and thus can lead to serious acci-
dents such as flood, fire, and structural failure. Therefore, it is
necessary to investigate the vibration of a floating roof subjected
to sloshing. Examples of past works for this problem include cal-
culation of the frequency response of a rigid floating roof �12�,
free �13� and forced �14� vibration analyses for an elastic floating
roof �13,14�, and experimental studies using actual earthquake
ground motion records as the tank excitation �15�. In conventional
studies, the linear approximation was applied to the formulation of
the liquid motion, and thus influences of the nonlinearity of slosh-
ing on the magnitude of stresses in an elastic floating roof have
not been investigated. The purpose of this paper is to analyze the
vibration of an elastic floating roof coupled with nonlinear slosh-
ing. By comparing the solutions obtained by linear and nonlinear
analyses, it is shown that neglecting the nonlinearity of sloshing
results in underestimation of the magnitude of stresses in the float-
ing roof. The physical reason for this result is discussed.

2 Analysis

2.1 Computational Model. The system to be considered is
shown in Fig. 1. The floating roof consisting of deck, pontoon,
and stiffeners is modeled as an axisymmetric elastic shell. In Fig.
1, a is the radius of the tank and h is the liquid depth. The detailed
parameters for the floating roof geometry are given in the section
for numerical examples. This analysis is performed under the as-
sumption that the liquid motion is inviscid, incompressible, and
irrotational and the wall and bottom of the tank are rigid. The
nonlinearity of the boundary conditions at the interface between

the liquid and the floating roof is considered. The static position of
the interface is considered a plane expressed by z=h and 0�r
�a in formulating the nonlinear boundary conditions, because the
variation in the z coordinate of the static position is very small
compared to the liquid depth and the difference between the radii
of the tank wall and the floating roof is very small compared to
the tank radius.

2.2 Variational Principle. In this paper, a system of govern-
ing equations is derived using a variational principle. Based on the
fact that the Lagrangian density of the liquid is equal to the liquid
pressure �16�, the action of the liquid motion can be expressed as

�
t1

t2

Lfdt =�
t1

t2 �� �
V

pldVdt �1�

where Lf is the Lagrangian of the liquid, V is the liquid domain,
and pl is the liquid pressure. By using the pressure equation for
unsteady flow, the liquid pressure can be expressed in terms of the
velocity potential �, which describes the liquid motion relative to
the moving tank as follows:

pl = − � f� ��

�t
+ g�z − h� + xf̈x�t� + y f̈y�t� +

1

2
����2 + Ġ�t��

�2�

where � f is the liquid density, g is the gravitational acceleration,

G�t� is an arbitrary time-dependent function, and f̈ x�t� and f̈ y�t�
are the earthquake acceleration inputs in the x and y directions,
respectively.

We substitute Eq. �2� into Eq. �1� and calculate the variation of
the functional. We must consider the variation for the liquid do-
main as well as for the liquid pressure because the liquid domain
is variable due to the vertical displacement ū of the floating roof.
By following the detailed derivation explained in Ref. �17�, we
can obtain

��
t1

t2

Lfdt =�
t1

t2 �� f �� �
V

�2���dV

− � f � �
W

� � · NW��dW

+ � f � �
S

�−
�ū

�t
cos�NS,z� − �� · NS	��dS
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−� �
S

pl�ū cos�NS,z�dS

− � f�G� �
S

�ū

�t
cos�NS,z�dS�dt �3�

where W is the wall and bottom of the tank, S is the interface
between the liquid and the floating roof; NW and NS are the out-
ward unit normal vectors of these surfaces, and cos�a ,b� is the
cosine of the angle between a and b directions. Because the inter-
face S is expressed by f�r ,� ,z , t�=z− ū�r ,� , t�=0 and the position
vector of S is given by X=exr cos �+eyr sin �+ez�h− ū�r ,� , t��,
the nonlinear expressions of the normal vector NS and the surface
element dS can be obtained as follows:

NS =
grad f


grad f 

= �er

�ū

�r
+ e�

1

r

�ū

��
+ ez��� �ū

�r
�2

+ �1

r

�ū

��
�2

+ 1�−1/2

�4�

dS = 
 �X

�r
�

�X

��

drd� = �� �ū

�r
�2

+ �1

r

�ū

��
�2

+ 1�1/2

rdrd�

�5�
Next, the motion of the floating roof is formulated based on the

finite element approach using the ring shell elements. Let ū, v̄, and
w̄ be the displacement components in the −z, �, and r directions,
respectively. For these components, a nodal displacement vector is
defined for a node i and is decomposed into two components with
different circumferential variations:

�
m=0

� �
ūm,i

v̄m,i

w̄m,i

� �w̄

�s
�

m,i

� = �
m=0

� �
ūmx,i cos m� + ūmy,i sin m�

v̄mx,i sin m� − v̄my,i cos m�

w̄mx,i cos m� + w̄my,i sin m�

� �w̄

�s
�

mx,i
cos m� + � �w̄

�s
�

my,i
sin m�

�
�6�

By calculating the kinetic and potential energies following the
procedure of the finite element method �FEM�, the variation of the
action for the floating roof can be expressed as

��
t1

t2

Lrdt = ��
t1

t2 1

2�
m=0

�

��Ẋmx
t MmẊmx − Xmx

t KmXmx�

+ �Ẋmy
t MmẊmy − Xmy

t KmXmy��dt

=�
t1

t2

�
m=0

�

�− �Xmx
t �MmẌmx + KmXmx�

− �Xmy
t �MmẌmy + KmXmy��dt �7�

where Mm and Km are the mass and stiffness matrices, and Xmx
and Xmy are the collections of �ūmx,i , v̄mx,i , w̄mx,i , ��w̄ /�s�mx,i�t and
�ūmy,i , v̄my,i , w̄my,i , ��w̄ /�s�my,i�t, respectively. For both compo-
nents, the mass and stiffness matrices Mm and Km are common.
Since the dimension of these matrices is very large, much com-
putation time and cost are required to transform the equations of
motion expressed in terms of the nodal displacements into modal
equations. To solve this problem, the floating roof is decomposed
into several components c�c=1,2 ,3 , . . . �, and their equations of
motion

MmcẌmxc + KmcXmxc = 0 �8�
are expressed in the following form:

�Mmc11Mmc12

Mmc21Mmc22
��Ẍmxc1

Ẍmxc2

	 + �Kmc11Kmc12

Kmc21Kmc22
��Xmxc1

Xmxc2
	 = �0

0
	

�9�

where Xmxc1 is the collection of the displacements of the nodes
that are not at the joints with the adjacent components while Xmxc2
is the collection of the other nodal displacements. The eigenmodes
of Xmxc1 under the condition that Xmxc2 is fixed to zero are deter-
mined by solving the eigenvalue problem

�− �2Mmc11 + Kmc11�Xmxc1 = 0 �10�

The static solution of Xmxc1 for the case in which Xmxc2 is arbi-
trarily given is obtained by neglecting the inertia term of Eq. �9�
as follows:

Kmc11Xmxc1 = − Kmc12Xmxc2 �11�

Expressing Xmxc1 by the sum of the linear combination of the
eigenmodes and the static solution yields

�Xmxc1

Xmxc2
	 = �Tmc11 − Kmc11

−1 Kmc12

O I
��qmxc1

Xmxc2
	 �12�

where Tmc11 is the modal transformation matrix whose columns
are the eigenvectors of the eigenvalue problem �10� and qmxc1 is
the modal coordinates. The dimension of qmxc1 and Xmxc2 can be
made much smaller than the dimension of Xmxc1. Therefore, the
dimension of the numerical problem to be solved can be markedly
reduced by the transformation �12�. By defining

Cmc = �Tmc11 − Kmc11
−1 Kmc12

O I
�, Xmxc� = �qmxc1

Xmxc2
	 �13�

Eq. �12� can be expressed as

Xmxc = CmcXmxc� �14�

Repeating the foregoing procedures for each component c�c
=1,2 ,3 , . . . �, the global form of Eq. �14� for the whole floating
roof structure can be obtained as

Xmx = CmXmx� �15�

Similarly, the corresponding equation Xmy =CmXmy� can be ob-
tained for the displacement components with subscript y in Eq.
�7�. Substituting these equations into Eq. �7� yields

��
t1

t2

Lrdt =�
t1

t2

�
m=0

�

�− �Xmx�t �Mm� Ẍmx� + Km� Xmx� �

− �Xmy�t �Mm� Ẍmy� + Km� Xmy� ��dt �16�
where

Mm� = Cm
t MmCm, Km� = Cm

t KmCm �17�
By summing Eqs. �3� and �16�, using Eqs. �4� and �5� to express

the normal vector and the surface element in terms of the circular

Fig. 1 Computational model
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cylindrical coordinates, and considering the virtual work done by the inertial force for each element of the floating roof, the required
variational principle for the system can be obtained as

� f �� �
V

�2���dV − � f�
0

2	�
0

h 
 ��

�r



r=a


��
r=aadzd� + � f�
0

2	�
0

a 
 ��

�z



z=0

��
z=0rdrd� − � f

��
0

2	�
0

a � �ū

�t
+ 
 ��

�z



z=h−ū

+ 
 ��

�r



z=h−ū

�ū

�r
+

1

r2
 ��

��



z=h−ū

�ū

��
�
��
z=h−ūrdrd�

+ �
m=0

�

�− �Xmx�t �Mm� Ẍmx� + Km� Xmx� � − �Xmy�t �Mm� Ẍmy� + Km� Xmy� �� + � f�
0

2	�
0

a �
 ��

�t



z=h−ū

− gū + r cos � f̈ x�t� + r sin � f̈ y�t�

+
1

2
�� ��

�r
�2

+ �1

r

��

��
�2

+ � ��

�z
�2�

z=h−ū
	�ūrdrd� + �

elem
�

0

2	�
s1

s2

�rhr��− f̈ x�t�cos � − f̈ y�t�sin ���w̄

+ � f̈ x�t�sin � − f̈ y�t�cos ���v̄�rdsd� − � f�G�
0

2	�
0

a
�ū

�t
rdrd� = 0 �18�

Since the variations in the velocity potential, the floating roof
displacement, and the arbitrary time-dependent function are arbi-
trary and independent of one another, we obtain the system of
governing equations. The first term of Eq. �18� yields the Laplace
equation corresponding to the condition of continuity in the liquid
domain as follows:

�2� = 0 �19�

The second and third terms of Eq. �18� give the boundary condi-
tion on the tank wall and bottom as follows:


 ��

�r



r=a

= 0, 
 ��

�z



z=0
= 0 �20�

In a similar manner, the fourth term of Eq. �18� represents the
condition that on the moving interface S, the normal velocity com-
ponents of the fluid particle and the floating roof are equal to each
other; the fifth to seventh terms of Eq. �18� lead to the equation of
motion for the floating roof subjected to the liquid pressure; and
the last term of Eq. �18� yields the volume constant condition.
Since the volume constant condition can be derived from other
kinematic conditions, the first to seventh terms of Eq. �18� consti-
tute the system of governing equations for the hydroelastic sys-
tem.

2.3 Nonlinear Differential Equations. The Galerkin method
is applied to transform the variational principle into ordinary dif-
ferential equations. The admissible function for the velocity po-
tential can be determined by solving the Laplace equation �19�
under the boundary condition �20� as follows:

��r,�,z,t� = �
m=0

�

�
n=1

�

�Ȧmnx�t�cos m� + Ȧmny�t�sin m��

�Jm�
mnr�
cosh�
mnz�
cosh�
mnh�

�21�

where Amnx and Amny are the generalized coordinates for the vi-
bration modes that are symmetric and asymmetric for the x axis,
respectively; Jm is the Bessel function of the first kind of order m;
and 
mn is the nth positive root of Jm� �
a�=0.

The nodal displacement vectors Xmx and Xmy of the floating
roof have a common eigenvector for each value of m. Hence, the
kth components of Xmx and Xmy can be expressed as

Xmxk�t� = �
p=1

�

TmkpEmpx�t�, Xmyk�t� = �
p=1

�

TmkpEmpy�t� �22�

where Tmkp is the kth component of the pth eigenvector while
Empx�t� and Empy�t� are the modal coordinates. In terms of these
modal coordinates, the floating roof displacement at an arbitrary
position can be expressed, e.g., as

ū�r,�,t� = �
m=0

�

�
p=1

�

�Empx�t�cos m� + Empy�t�sin m��Smp�r�

�23�

where Smp�r� is the pth modal function defined at the position of
interest. This function can be determined through the interpolation
of the nodal displacements expressed in the local coordinates and
the transformation from the local coordinates to the global
coordinates.

Substituting Eqs. �21�–�23� into the variational principle �18�
and vanishing the coefficients of the variations �Amqx, �Amqy,
�Emqx, and �Emqy lead to a system of nonlinear ordinary differen-
tial equations with respect to the generalized coordinates as fol-
lows:

− � f
−1M̃mq�Ëmqx + �mq

2 Emqx� + �
n=1

�

cmnq
�1� Ämnx − �

p=1

�

cmpq
�2� Empx

+ �m1cmq
�3� f̈ x�t� + Gmqx

�1� = 0 �for �Emqx;m = 0,1,2� �24�

− � f
−1M̃mq�Ëmqy + �mq

2 Emqy� + �
n=1

�

cmnq
�1� Ämny − �

p=1

�

cmpq
�2� Empy

+ �m1cmq
�3� f̈ y�t� + Gmqy

�1� = 0 �for �Emqy ;m = 1,2� �25�

− �
p=1

�

cmpq
�4� Ëmpx − cmq

�5�Ämqx + Gmqx
�2� = 0 �for �Amqx;m = 0,1,2�

�26�
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− �
p=1

�

cmpq
�4� Ëmpy − cmq

�5�Ämqy + Gmqy
�2� = 0 �for �Amqy ;m = 1,2�

�27�

where M̃mq and �mq are the modal mass and the eigenfrequency
of the floating roof uncoupled with the liquid motion, and �m1 is
Kronecker’s delta. Constants cmnq

�1� , etc., and lengthy nonlinear
terms Gmqx

�1� , etc., are presented in Appendix A together with a
brief explanation for the derivation of the nonlinear terms. By
solving Eqs. �24�–�27�, the response of the system can be deter-
mined.

3 Numerical Examples
Numerical calculation was conducted for the parameters pre-

sented in Table 1. The detailed geometry of the floating roof used
for the numerical example is shown in Fig. 2. The damping
term 
��
z=h is added to the pressure term of Eq. �18� and the
constant
� is determined as �=2
mn�mn �
mn=0.01, �mn

2

=g
mn tanh�
mnh�� for each modal component of � given by Eq.
�21�. Furthermore, for the radial displacement of the outer rim of
the pontoon relative to the tank wall, the spring and damping
support constants per unit area 86,000 N /m3 and 5000 N s /m3

were taken into account. The excitations were given as f̈ x�t�
=0.08 sin��t� �0� t�6	 /��, f̈ x�t�=0 �6	 /�� t�, and f̈ y�t�=0
�0� t�, where �=1.05�11. The responses at the circumferential
coordinate �=0 of the vertical displacement at the outer rim of the

pontoon and the out-of-plane stresses �A, �B, and �C at Positions
A, B, and C shown in Fig. 3 are presented in Fig. 4. These out-
of-plane stresses just near the joint between the deck and the
pontoon were found to attain high levels by searching the maxi-
mum magnitude of the in-plane and out-of-plane components of
each stress component at all places over the floating roof. These
out-of-plane stresses can be calculated by subtracting the stress
values at 
=−0.5hr from those at 
=0.5hr, where hr is the thick-
ness of the roof at the position of interest and 
 is the coordinate
measured along the normal of the midplane of the shell. The posi-
tive direction of 
 is −z on the deck and +r on the inner rim of the
pontoon.

In Fig. 4, the solutions obtained by the linear analysis are
shown using thin lines for the sake of comparison. In the linear
analysis, only the modal component with circumferential wave
number 1 is excited because all the nonlinear terms in Eqs.
�24�–�27� are neglected. It can be seen from Fig. 4 that although
the nonlinear effect is weak for the displacement of the floating
roof, underestimation of the response associated with the use of
the linear approximation is marked for the stresses �B and �C.
Thus, the nonlinear analysis is obligatory for avoiding the under-
estimation of these stresses.

Another important point is that these stresses are of the same
order in magnitude as the stress shown in Fig. 4�b� although the
inner rim of the pontoon is much thicker than the deck. Figure 5
shows the responses of the stresses �B and �C for the case where
the thickness of the inner rim of the pontoon is reduced to 0.01 m,
which is still larger than the thickness 0.0045 m of the deck. In
this case, the response of the stress �A remains almost the same as
in Fig. 4�b�, so that the stresses �B and �C become considerably
larger than the stress �A. It is recognized that many structural
failure accidents were caused at the inner rim of the pontoon just
near its joint with the deck, although the inner rim of the pontoon
was made thicker than the other places of the floating roof. The
results presented here are useful to explain the physical reason for
these structural failure accidents.

Figure 6 shows circumferential variations of the stresses �B and
�C, which exhibit the large nonlinear effect. It can be seen from
Fig. 6 that for the nonlinear responses, the contribution of the
modal component with circumferential wave number 2 is large.
Therefore, the physical reason for the large nonlinear effect can be
explained by a characteristic of this modal component. Figures
7–9 show the vertical displacement modes of the floating roof
along the interface with the liquid for the circumferential wave
number m=0, 1, and 2, respectively. For the modes with m=0 and
1, the radial lowest mode is a rigid-body displacement mode, and
the elastic vibration of the inner rim of the pontoon �circular cy-
lindrical shell� is described by the axisymmetric mode and the
beam-bending-type mode, respectively. Because these modes ex-
hibit low flexibility, the elastic vibration amplitude of the floating
roof is large over the thin plate deck �0�r�36.08 m� and is

Table 1 Parameters of numerical example

Radius of tank a 41.7 m
Liquid depth h 20.3 m
Liquid density � f 887 kg /m3

Radius of deck b1 36.08 m
Position of compartments b2=b3=b4 1.78 m
Height of pontoon H 0.918 m
Attachment position of pontoon to
deck H1=H2

0.272 m

Slope tan−1�dz /dr� of the deck 0.002 deg
Slope tan−1�dz /dr� of the top of pontoon 4 deg
Slope tan−1�dz /dr� of the bottom of
pontoon

−0.002 deg

Thickness �deck� 0.0045 m
Thickness �pontoon except inner rim� 0.006 m
Thickness �inner rim of pontoon� 0.02 m
Radial coordinates of stiffeners 5.5+6i m �i=0–4�
Height and breadth of stiffeners 0.2 m, 0.4 m
Thickness of stiffeners 0.0045 m
Density of floating roof 7850 kg /m3

Young’s modulus of floating roof 2.1�1011 N /m2

Poisson’s ratio of floating roof 0.3

Fig. 2 Geometry of floating roof used for numerical example

Fig. 3 Positions A, B, and C at which responses of out-of-
plane stresses are computed.
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small at the pontoon for the radial higher modes. On the other
hand, for the modes with m=2 shown in Fig. 9, the circular cy-
lindrical shell oscillates in the flexible mode that renders the cir-
cular cross section of the shell elliptical. Hence, there exists a
radial mode in which the oscillation of the pontoon is predominant
to the vibration of the deck, although in many radial modes the
amplitude of the displacement is large over the thin deck and is
small at the pontoon. An example for this type of mode is the fifth
radial mode in Fig. 9. This mode is referred to as the pontoon
vibration mode in the subsequent discussion. The displacement of
the pontoon in this pontoon vibration mode is shown in Fig. 10.

Except for the fifth radial mode in Fig. 9, the pontoon vibration
mode was not found within the range of the radial 1st–12th modes
for the circumferential wave number m=0, 1, and 2. The pontoon

vibration mode with m=2 does not cause a large difference be-
tween the linear and nonlinear solutions for the roof displacement,
because the rigid-body displacement mode with m=1 has the
main contribution. However, for the stresses shown in Figs. 4�c�
and 4�d�, this rigid-body displacement mode does not have any
contribution. Therefore, the pontoon vibration mode with m=2
makes the nonlinear solutions considerably larger than the linear
responses. If the pontoon vibration mode is neglected in the non-

Fig. 4 Comparison between the linear and nonlinear re-
sponses „solid line, linear; bold line, nonlinear…

Fig. 5 Results for the case where the thickness of the inner
rim of the pontoon is reduced to 0.01 m „solid line, linear; bold
line, nonlinear…

Fig. 6 Circumferential variations of the out-of-plane stresses
shown in Figs. 4„c… and 4„d… at t=33 s „solid line, linear; bold
line, nonlinear…
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linear analysis, the large difference between the linear and nonlin-
ear solutions observed in Figs. 4�c� and 4�d� is not caused, as is
illustrated in Fig. 11.

Figure 12 illustrates that the underestimation of the stress mag-
nitude due to the linear analysis becomes more marked when the
liquid depth decreases. The physical reason for this tendency is
discussed in Appendix B. This result indicates that the stress mag-
nitude estimation is important irrespective of the liquid-filling
level in contrast to the analysis for the vertical displacement of the
roof for avoiding flood accidents.

In Appendix C, an experimental validation is presented, which
illustrates that the linear analysis results in underestimation of the
response and that the nonlinear solution is in good agreement with
the experimental result.

4 Summary and Conclusions
A vibration analysis of a floating roof hydroelastically coupled

with sloshing has been presented. The nonlinearity of sloshing
was taken into consideration, thereby examining the effect of the
nonlinearity on the magnitude of the stresses arising in the floating
roof. It was shown that if the nonlinearity of the sloshing is ne-
glected, the magnitude of the stresses is considerably underesti-
mated, even when the nonlinear effect is very small for the dis-
placement of the floating roof. The physical reason for this result
was explained by the fact that the vibration modes of the floating
roof with circumferential wave number 2, which are excited by
the nonlinearity of the sloshing, may include an eigenmode in

Fig. 7 Vertical displacement modes of the floating roof „cir-
cumferential wave number is 0…

Fig. 8 Vertical displacement modes of the floating roof „cir-
cumferential wave number is 1…

Fig. 9 Vertical displacement modes of the floating roof „cir-
cumferential wave number is 2…

Fig. 10 Displacement of the pontoon in the radial fifth mode
with circumferential wave number 2
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which the oscillation of the pontoon is predominant to the vibra-
tion of the deck. Furthermore, the underestimation associated with
the use of linear approximation becomes more marked with the
decrease in the liquid depth. This is due to the fact that some of
the excitation terms for the modal component with circumferential
wave number 2 remain constant, while the other excitation terms
reduce in magnitude with the decrease in the eigenfrequency of
the sloshing.

Nomenclature
Amnx ,Amny � generalized coordinates of velocity potential

a � radius of tank
Empx ,Empy � generalized coordinates of floating roof

displacement

f̈ x�t� , f̈ y�t� � earthquake acceleration in the x and y direc-
tions, respectively

g � gravitational acceleration
h � liquid depth

Lf ,Lr � Lagrangian of liquid and floating roof,
respectively

NS � outward unit normal vector of the interface
between liquid and floating roof

NW � outward unit normal vector of the tank wall
and bottom

pl � liquid pressure
S � interface between liquid and floating roof

ū , v̄ , w̄ � displacements of floating roof shell in the −z,
�, and r directions

V � liquid domain
W � tank wall and bottom
� f � liquid density
� � velocity potential describing liquid motion

relative to the tank

Appendix A: Constants and Nonlinear Terms in Equa-
tions (24)–(27)

The constants in the linear terms of the differential equations
�24�–�27� are as follows:

cmnq
�1� =�

0

a

Jm�
mnr�Smq�r�rdr, cmpq
�2� = g�

0

a

Smp�r�Smq�r�rdr

cmq
�3� =�

0

a

r2Smq�r�dr + �m1 �
emem

�
s1

s2

�rhr�V̄1q − W̄1q�rds �A1�

cmpq
�4� =�

0

a

Smp�r�Jm�
mqr�rdr, cmq
�5� = tanh�
mqh��

0

a

Jm
2 �
mqr�rdr

To derive the nonlinear terms, we first expand the time and
spatial derivatives of the velocity potential given by Eq. �21� into
the Tayler series with respect to ū, thereby expressing the inte-
grands in the fourth and sixth terms of Eq. �18� in terms of alge-

braic nonlinear functions of the generalized coordinates. Through
the circumferential integration, it is found that �i� nonlinear terms
in the ordinary differential equations with respect to the general-
ized coordinates with circumferential wave number 1 include
products of three generalized coordinates with circumferential
wave number 1 and products of two generalized coordinates
whose circumferential wave numbers are, respectively, 1 and 2, or
1 and 0; and that �ii� nonlinear terms in the ordinary differential
equations with respect to the generalized coordinates with circum-
ferential wave numbers 2 and 0 include products of two general-
ized coordinates with circumferential wave number 1. Through
these considerations, the ordinary differential equations that are
derived taking into account these products lead to the second-
order approximation solution. Examples of the resulting nonlinear
terms are presented below:

Fig. 12 Results for the case where the liquid depth is de-
creased to 12.3 m „solid line, linear; bold line, nonlinear…

Fig. 11 Response of the out-of-plane stress �C at Position C
shown in Fig. 3 „solid line, linear analysis; bold line, nonlinear
analysis neglecting the radial fifth mode shown in Fig. 9…
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G1qx
�1� = �

n=1

�

�
l=1

�

�
j=1

�

��nljq
�1� �3Ä1nxE1lxE1jx + Ä1nxE1lyE1jy + Ä1nyE1lxE1jy + Ä1nyE1lyE1jx� + �nljq

�2� �3Ȧ1nxȦ1lxE1jx + Ȧ1nyȦ1lyE1jx + Ȧ1nxȦ1lyE1jy

+ Ȧ1nyȦ1lxE1jy� + �nljq
�3� �Ȧ1nxȦ1lxE1jx + 3Ȧ1nyȦ1lyE1jx − Ȧ1nxȦ1lyE1jy − Ȧ1nyȦ1lxE1jy� + �nljq

�4� �3Ȧ1nxȦ1lxE1jx + Ȧ1nyȦ1lyE1jx

+ Ȧ1nxȦ1lyE1jy + Ȧ1nyȦ1lxE1jy�� + �
n=1

�

�
l=1

�

��nlq
�11��Ä1nxE2lx + Ä1nyE2ly� + �nlq

�12��Ä2nxE1lx + Ä2nyE1ly� + �nlq
�13�Ä1nxE0lx + �nlq

�14�Ä0nxE1lx

+ ��nlq
�15� + �nlq

�16� + �nlq
�17���Ȧ1nxȦ2lx + Ȧ1nyȦ2ly� + ��nlq

�18� + �nlq
�19��Ȧ1nxȦ0lx� �A2�

G2qx
�1� = �

n=1

�

�
l=1

�

��nlq
�21��Ä1nxE1lx − Ä1nyE1ly� + ��nlq

�23� − �nlq
�24� + �nlq

�25���Ȧ1nxȦ1lx − Ȧ1nyȦ1ly�� �A3�

G0qx
�1� = �

n=1

�

�
l=1

�

��nlq
�22��Ä1nxE1lx + Ä1nyE1ly� + ��nlq

�26� + �nlq
�27� + �nlq

�28���Ȧ1nxȦ1lx + Ȧ1nyȦ1ly�� �A4�

G1qx
�2� = �

n=1

�

�
l=1

�

�
j=1

�

��nljq
�1� �− d/dt��3Ȧ1nxE1lxE1jx + Ȧ1nxE1lyE1jy + Ȧ1nyE1lxE1jy + Ȧ1nyE1lyE1jx� + �nljq

�2� �− d/dt��Ȧ1nxE1lxE1jx − Ȧ1nxE1lyE1jy

− Ȧ1nyE1lxE1jy + 3Ȧ1nyE1lyE1jx� + �nljq
�3� �− d/dt��3Ė1nxE1lxE1jx + Ė1nxE1lyE1jy + Ė1nyE1lxE1jy + Ė1nyE1lyE1jx��

+ �
n=1

�

�
l=1

�

���nlq
�11� + �nlq

�12���− d/dt��Ȧ1nxE2lx + Ȧ1nyE2ly� + ��nlq
�13� + �nlq

�14���− d/dt��Ȧ2nxE1lx + Ȧ2nyE1ly� + �nlq
�15��− d/dt��Ȧ1nxE0lx�

+ �nlq
�16��− d/dt��Ȧ0nxE1lx� + �nlq

�17��− d/dt��Ė2nxE1lx + Ė2nyE1ly� + �nlq
�18��− d/dt��Ė1nxE2lx + Ė1nyE2ly� + �nlq

�19��− d/dt��Ė0nxE1lx�

+ �nlq
�20��− d/dt��Ė1nxE0lx�� �A5�

G2qx
�2� = �

n=1

�

�
l=1

�

���nlq
�21� − �nlq

�22���− d/dt��Ȧ1nxE1lx − Ȧ1nyE1ly�

+ �nlq
�25��− d/dt��Ė1nxE1lx − Ė1nyE1ly�� �A6�

G0qx
�2� = �

n=1

�

�
l=1

�

���nlq
�23� + �nlq

�24���− d/dt��Ȧ1nxE1lx + Ȧ1nyE1ly�

+ �nlq
�26��− d/dt��Ė1nxE1lx + Ė1nyE1ly�� �A7�

where �nljq
�1� , etc., are constants. Because these are lengthy, few

examples are given below.

�nljq
�1� =�

0

a
1

8

1n

2 J1nS1lS1jS1qrdr, �nljq
�2� = −�

0

a
1

4
�1lJ1n� J1l� S1jS1qrdr

�nljq
�1� =�

0

a ��1

8

1n

2 �1n +
1

4

1n

2 �1q +
1

8
�1n
1q

2 �J1nS1lS1jJ1q

−
1

4
�1nJ1n� S1lS1j� J1q −

1

4
�1qJ1n� S1l� S1jJ1q�rdr �A8�

�nljq
�2� = −�

0

a
1

4
��1n + �1q�Ĵ1nŜ1lS1jJ1qrdr

where the following symbols are introduced for concise descrip-
tion:

Jmn = Jm�
mnr�, Jmn� =
dJm�
mnr�

dr
, Ĵmn =

1

r
Jm�
mnr�

�A9�

Smn = Smn�r�, Smn� =
dSmn�r�

dr
, Ŝmn =

1

r
Smn�r�

�mn = 
mn tanh�
mnh� �A10�

The operator −d /dt in Eqs. �A5�–�A7� arises from integration by

parts that transforms the stationary conditions for �Ȧmqx into those
for �Amqx.

Appendix B: The Reason Why the Nonlinear Effect is
Accentuated With the Decrease in the Liquid Depth

To facilitate the discussion, let us consider the case in which the
excitation in the y direction is not present and the generalized
coordinates with suffix y are not excited. First, we obtain the
first-order approximation solution. Since the mass of the floating
roof is much smaller than the liquid mass, the first term of Eq.
�24� can be neglected. Equations �24� and �26� for m=1 can be
reduced to the following matrix equations by neglecting the third-
order nonlinear functions:

C1
�1�Ä1 − C1

�2�E1 + C1
�3� f̈ x�t� = 0 �B1�

C1
�4�Ë1 + C1

�5�Ä1 = 0 �B2�

where the column vectors A1 and E1 are the collections of A1nx

and E1px, respectively, while the matrices C1
�i� are the collections

of c�i� presented in Eq. �A1�. Eliminating Ä1 from Eqs. �B1� and
�B2� leads to

Ë1 + M1
−1K1E1 = M1

−1C1
�3� f̈ x�t� �B3�

where M1=C1
�1��C1

�5��−1C1
�4� and K1=C1

�2�. Eigenvalues of M1
−1K1

for lower modes can be approximated by the eigenfrequencies
�1n

2 =g
1n tanh�
1nh� of the sloshing. From Eq. �A1�, the coeffi-
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cient M1
−1C1

�3� of the excitation term is proportional to tanh�
1nh�
included in C1

�5�. Therefore, dependence of the responses of the

predominant lower modes to the excitation f̈ x�t�=sin �t on the
liquid depth can be evaluated as

E1nx � tanh�
1nh�sin �t/��1n
2 − �2� �B4�

Because we consider the case in which the liquid depth normal-
ized by the tank radius is decreased and the excitation frequency
is near the resonance of the sloshing, the following relations hold:

tanh�
1nh� � O�h�, �2 � O�h�, C1
�5� � O�h� �B5�

Hence, from Eqs. �B2� and �B4�, we obtain

E1nx = Ê1nx sin �t � O�h0�, A1nx = Â1nx sin �t � O�h−1�
�B6�

For Eqs. �24� and �26� with m=2, the matrix equations similar
to Eqs. �B1� and �B2� can be written as

C2
�1�Ä2 − C2

�2�E2 + G2
�1� = 0 �B7�

− C2
�4�Ë2 − C2

�5�Ä2 + G2
�2� = 0 �B8�

Eliminating Ä0 from Eqs. �B7� and �B8� yields

Ë2 + M2
−1K2E2 = M2

−1�G2
�1� + C2

�1��C2
�5��−1G2

�2�� �B9�

where M2=C2
�1��C2

�5��−1C2
�4� and K2=C2

�2�. For lower modes, the
eigenvalues of M2

−1K2 nearly equal the eigenfrequencies �2n
2

=g
2n tanh�
2nh� and Eq. �B9� can be expressed as

Ë2qx + �2q
2 E2qx = �2q

�1�G2qx
�1� + �2q

�2�G2qx
�2� �B10�

Because C2
�5� depends on h through tanh�
2nh� �see Eq. �A1��, we

see that

�2q
�1� � O�h�, �2q

�2� � O�h0� �B11�

The nonlinear functions on the right-hand side of Eq. �B10� can be
calculated by substituting Eq. �B6� into Eqs. �A3� and �A6� as
follow:

G2qx
�1� = �

n=1

�

�
l=1

� ��nlq
�21�Â1nxÊ1lx

1

2
�2�cos 2�t − 1�

+ ��nlq
�23� − �nlq

�24� + �nlq
�25��Â1nxÂ1lx

1

2
�2�1 + cos 2�t��

�B12�

G2qx
�2� = �

n=1

�

�
l=1

�

���nlq
�21� − �nlq

�22��Â1nxÊ1lx�− �2�cos 2�t

− �nlq
�25�Ê1nxÊ1lx�

2 cos 2�t� �B13�

Substituting Eqs. �B5� and �B6� into Eqs. �B12� and �B13� and
using Eq. �B11� lead to the following order estimation of the
right-hand side of Eq. �B10�:

�2q
�1�G2qx

�1� � �
n=1

�

�
l=1

�

��nlq
�21�O�h��cos 2�t − 1�

+ ��nlq
�23� − �nlq

�24� + �nlq
�25��O�h0��1 + cos 2�t��

�B14�

�2q
�2�G2qx

�2� � �
n=1

�

�
l=1

�

���nlq
�21� − �nlq

�22��O�h0� − �nlq
�25�O�h��cos 2�t

�B15�

Here, some of the parameters depend on h through �mn defined by
Eq. �A10�, e.g.,

�nlq
�21� = −�

0

a
1

2
�1nJ1nS1lS2qrdr, �nlq

�23� =�
0

a
1

4
J1n� J1l� S2qrdr

�B16�

�nlq
�24� =�

0

a
1

4
Ĵ1nĴ1lS2qrdr

The dependence of these parameters on the liquid depth is as
follows:

�nlq
�21� � O�h�, �nlq

�23�,�nlq
�24� � O�h0�, �nlq

�25� � O�h2�
�B17�

�nlq
�21�,�nlq

�22� � O�h0�, �nlq
�25� � O�h�

From Eqs. �B14� and �B15�, Eq. �B10� can be expressed in the

form Ë2q+�2q
2 E2q=C1+C2 cos 2�t. Its solution is E2q=C1 /�2q

2

+C2 cos 2�t / ��2q
2 −4�2�, where the squared frequencies are O�h�

as can be seen from Eq. �B5�. Therefore, the terms of the solution
including �nlq

�23�,�nlq
�24�, �nlq

�21�, and �nlq
�22� become large with O�h−1�

and accentuate the nonlinear effect. Thus, it can be found that the
accentuated nonlinear effect for the decreased liquid depth origi-
nates in the O�h0� terms in Eqs. �B14� and �B15� to be divided by
the squared eigenfrequencies of the sloshing with the order of
O�h1�. By looking into the derivation of the nonlinear functions,
it can be found that these terms come from the nonlinear
terms 
�� /�z
z=h−ū, 
�� /�r
z=h−ū�ū /�r, 
r−2�� /��
z=h−ū�ū /��,

��� /�r�2
z=h−ū, and 
r−2��� /���2
z=h−ū in Eq. �18�, not from the

term �� /�t or ��� /�z�2 in the pressure equation.

Fig. 13 The responses of liquid surface displacement
„a=1 m, h=1.263 m; damping ratio 0.005; the tank is
excited by the displacement fx„t…=0.2 sin �11t where �11
= †g�11 tanh„�11h…‡1/2 and 0Ï tÏ6� /�11…
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Appendix C: Validation for the Comparison Between
Linear and Nonlinear Analyses

For this validation, the response of a free liquid surface is cal-
culated and is compared with experimental data that could be
found in previous literature �18�. This response analysis can be
conducted by altering the admissible function for the vertical dis-
placement ū of the floating roof to the liquid surface displacement
� as follows

��r,�,t� = �
m=0

�

�
n=1

�

�Emnx�t�cos m� + Emny�t�sin m��Jm�
mnr�

�C1�
The results are presented in Fig. 13. As can be seen from Fig.
13�a�, the linear analysis results in underestimation of the re-
sponse. The positive maximal and negative minimal values of the
nonlinear solution shown in Fig. 13�b� are in good agreement with
the experimental result presented in Fig. 13�a� although phase
difference at the initial time is caused in the experiment.
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Optimal Winding Conditions of
Flat Steel Ribbon Wound
Pressure Vessels With
Controllable Stresses
Stress analysis of flat steel ribbon wound pressure vessels (FSRWPVs) is very difficult
because they have a special discrete structure and complex pretensions exit in the flat
steel ribbons, which are wound around the inner shell layer by layer. An analytical
multilayered model for stress analysis is presented in this paper, which involves the effect
of prestress in every flat steel ribbon layer as well as in the inner shell. Based on this
model, an optimal design method for FSRWPV is suggested, which can assure a reason-
able stress level and distribution along the wall thickness during the operation. A prac-
tical example of a large FSRWPV is finally given for illustration.
�DOI: 10.1115/1.2912740�

Keywords: flat steel ribbon wound pressure vessel (FSRWPV), stress analysis, analytical
model, optimal design

1 Introduction
There are more than 10,000 flat steel ribbon wound pressure

vessels �FSRWPVs� used in the chemical industry all over the
world, and none of them has been suffered from sudden burst
since their first operation in 1970. This strongly implies the good
safety of FSRWPV, which is, in fact, an outcome of its special
discrete structure, as shown in Fig. 1. The design method and
other related matters have been formed into Code Cases 2229 and
2269 in Divisions 1 and 2, Sec. VIII, ASME Code, in 1996 and
1997, respectively. The title of the code is “Design of Layered
Vessel Using Flat Ribbon Wound Cylindrical Shells,” which
serves an excellent guide to the practical design and manufacture
�1–4�.

Traditional high-pressure vessels are fabricated in a single-
layered, thick-walled form, and hence no gaps or cracks are per-
mitted in the wall. This makes the corresponding analysis simpler
than that of FSRWPV, in which gaps can exist all over the cylin-
drical body. Furthermore, there is prestress in the steel ribbons,
between which friction also exists. Currently, there are several
theoretical models for stress analysis of FSRWPVs that have been
employed for the purpose of design. One model that is well
known to the area was built by Professor Zhu, who took consid-
eration of the frictional forces as well as gaps between steel rib-
bons, but ignored the effect of prestress in steel ribbons �5�. The
design based on Zhu’s model is conservative since the prestress is
obviously beneficial to the load capacity of FSRWPV. However,
to achieve a safe and also economic design, the effect of prestress
in steel ribbons should be precisely evaluated. In fact, the pre-
stress in steel ribbons is very important since it can change the
stress distribution in FSRWPV by adjusting the value of prestress
in every steel ribbon, and hence optimal design could be achieved
�6–8�. This paper sets up an optimal design model by extending
Zhu’s model to include the effect of prestress in the steel ribbons.
Practical example is given to show the optimized stress distribu-
tion in FSRWPV.

2 Vessel Structure
The structure of FSRWPV has an inner cylindrical shell �at

1 /4–1 /6 of total thickness� and flat steel ribbon wound layers
�see Fig. 1�. Its ends are made up of single or multilayer convex
covers. Its flat steel ribbons are wound in a spiral angle layer by
layer. Every neighbor layers are wound in contrary angle. The
wound angle is 15–30 deg. There is prestress in every flat steel
ribbon. The prestress can be designed according to necessity. The
outside of FSRWPV is a thin safeguard shell that can prevent
FSRWPV from corroding, and where can also install leakage sen-
sor for detecting leaking condition of inner shell.

3 Model of Stress Analysis
In order to guarantee the safety of FSRWPVs during operation,

the following two requirements should generally be followed: �1�
The stress distribution in the vessel wall should be uniform, with-
out any stress concentration; �2� the stress in the inner shell should
be low enough or even negative if possible. The second is essen-
tially important because high stress level in the inner layer is
generally very dangerous, especially when FSRWPV works with
corrosive gases or fluids. The above two requirements can be
readily satisfied under the concept of optimal design by properly
adjusting prestress in the steel ribbons �9,10�.

3.1 Final State of Stress. After steel ribbons are wound with
prestress around the inner shell of FSRWPV, residual stresses are
induced in the vessel. Hence, the final state of stress is the com-
bination of the residual stress and the stress caused by the oper-
ating pressure. Introducing the stress vector �= ��h ,�r ,�z�T, we
have

�final = �pre + �ope �1�

where �h, �r, �z �MPa� are the hoop, radial, and axial stresses,
respectively, and the subscripts “final,” “pre,” and “ope” denote
the final, prestress, operating states, respectively.

The operating stresses can be readily calculated using Lamé
formulas �11�, and are fixed if the shape of vessel and the operat-
ing pressure P are determined. Thus, the adjustment of stress dis-
tribution in the vessel can only be realized by controlling �pre, by
altering either the prestress level or the winding angle of each
steel ribbon. As the basic requirements of the design of FSRWPV

Contributed by the Applied Mechanics Division of ASME for publication in the
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as just mentioned, it is better that the hoop stress in the inner shell
is zero or even negative, while the stress in the flat steel ribbon
layers is uniform �12,13�. This kind of stress distribution is advan-
tageous to prolonging the service lifetime of the vessel �14�. If the
distribution of the final stresses � is determined according to a
particular design, the prestress �pre can then be calculated from
Eq. �1�.

3.2 Residual Stresses. The dimension of the cross section of
FSRWPV with m layers of flat steel ribbons is shown in Fig. 2.
Denote F as the vector consisting of pretensioning stresses in all
steel ribbons:

F = �F1 F2 ¯ Fm� �2�

where Fk is the pretensioning stress in the kth layer of steel rib-
bons, MPa.

As shown in Fig. 3, when the kth layer is wound, the preten-

sioning stress Fk not only yields longitudinal stress �Fk in the
direction of ribbon but also causes radial stress �rk �or radial
pressure Prk� that acts on the finished part of vessel �i.e., the inner
shell plus the prior wound k−1 layers of steel ribbons�. The radial
pressure vector Pr= �Pr1 , Pr2 , ¯ , Prm� can be calculated accord-
ing to

Pr = �w cos2 �FR−1 �3�

where �w �mm� is the thickness of a single steel ribbon, and �
�deg� is the winding angle, and

R = �
R1 0 0 ¯ 0

0 R2 0 ¯ 0

0 0 R3 ¯ 0

] ] ] � ]

0 0 0 ¯ Rm

�
with Rk �mm� being the inner radius of the kth layer �15,16�.

Regarding the above calculated radial pressure as the outer
pressure acting on the pressure vessel, we can easily calculate the
residual stresses with Lamé formulas, after all layers of FSRWPV
are wounded, as follows:

�r,pre = Lr�Pr�T = �w cos2 �LrR
−1FT �4�

�h,pre = MFT + Lh�Pr�T = �M + �w cos2 �LhR−1�FT �5�

�z,pre = Lz�Pz�T �6�

where �r,pre, �h,pre, and �z,pre are the radial, hoop, and axial pre-
stress vectors caused by the pretensioning, respectively. In Eq. �4�,
Lr is the stress calculation matrix, an upper triangular matrix, with
its element on the sth row and qth column �q�s� given by

Lr,sq = −
Rq

2

Rq
2 − Ri

2�1 −
Ri

2

Rs
2� �7�

where Ri is the inner radius of FSRWPV, see Fig. 2. Thus, Lr
takes the following form:Fig. 2 Cross section of FSRWPV

Fig. 1 Structure of a FSRWPV

Fig. 3 Equilibrium of flat steel ribbon
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Lr = − �
1

R2
2

R2
2 − Ri

2�1 −
Ri

2

R1
2� R3

2

R3
2 − Ri

2�1 −
Ri

2

R1
2� ¯

Rm
2

Rm
2 − Ri

2�1 −
Ri

2

R1
2�

0 1
R3

2

R3
2 − Ri

2�1 −
Ri

2

R2
2� ¯

Rm
2

Rm
2 − Ri

2�1 −
Ri

2

R2
2�

0 0 1 ¯

Rm
2

Rm
2 − Ri

2�1 −
Ri

2

R3
2�

] ] ] � ]

0 0 0 ¯ 1

� �8�

In Eq. �5�, the matrix M is determined by the winding angle and is given by

M = �
0 0 0 . . . 0

cos2 � 0 0 . . . 0

0 cos2 � 0 . . . 0

] ] ] � ]

0 0 0 . . . cos2 �
� �9�

and the upper triangular calculation matrix Lh is

Lh = − �
2R1

2

R1
2 − Ri

2

2R2
2

R2
2 − Ri

2

2R3
2

R3
2 − Ri

2 ¯

2Rm
2

Rm
2 − Ri

2

0
R2

2

R2
2 − Ri

2�I +
Ri

2

R1
2� R3

2

R3
2 − Ri

2�1 +
Ri

2

R1
2� ¯

Rm
2

Rm
2 − Ri

2�1 +
Ri

2

R1
2�

0 0
R3

2

R3
2 − Ri

2�1 +
Ri

2

R2
2� ¯

Rm
2

Rm
2 − Ri

2�1 +
Ri

2

R2
2�

] ] ] � ]

0 0 0 ¯

Rm
2

Rm
2 − Ri

2�1 +
Ri

2

Rm−1
2 �

� �10�

In Eq. �6�, Pz=sin2 �F, and

Lz = �
R1

2

R1
2 − Ri

2

R2
2

R2
2 − Ri

2

R3
2

R3
2 − Ri

2 ¯

Rm
2

Rm
2 − Ri

2

0
R2

2

R2
2 − Ri

2

R3
2

R3
2 − Ri

2 ¯

Rm
2

Rm
2 − Ri

2

0 0
R3

2

R3
2 − Ri

2 ¯

Rm
2

Rm
2 − Ri

2

] ] ] � ]

0 0 0 ¯

Rm
2

Rm
2 − Ri

2

� �11�

3.3 Operating Stresses. FSRWPV can be regarded as integrated thick-walled pressure vessel, and hence Lamé formulas can again
be employed for calculating stresses under the operating pressure. The radial stress vector is then determined by

�r,ope = MrP
T �12�

where P is the operating pressure vector and Mr is the corresponding radial stress calculation matrix as follows:

Mr = �
Ri

2

Ro
2 − Ri

2�1 −
Ro

2

Ri
2� 0 0 ¯ 0

0
Ri

2

Ro
2 − Ri

2�1 −
Ro

2

R1
2� 0 ¯ 0

0 0
Ri

2

Ro
2 − Ri

2�1 −
Ro

2

R2
2� ¯ 0

] ] ] � ]

0 0 0 ¯

Ri
2

Ro
2 − Ri

2�1 −
Ro

2

Rm−1
2 �

� �13�

where Ro is the outer radius of FSRWPV, see Fig. 2.
In the same manner, we have
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�h,ope = MhPT �14�
where

Mh = �
Ri

2

Ro
2 − Ri

2�1 +
Ro

2

Ri
2� 0 0 ¯ 0

0
Ri

2

Ro
2 − Ri

2�1 +
Ro

2

R1
2� 0 ¯ 0

0 0
Ri

2

Ro
2 − Ri

2�1 +
Ro

2

R2
2� ¯ 0

] ] ] � ]

0 0 0 ¯

Ri
2

Ro
2 − Ri

2�1 +
Ro

2

Rm−1
2 �

� �15�

The axial stress vector is calculated from

�z,ope = MzP
T �16�

where

Mz =
Ri

2

Ro
2 − Ri

2I �17�

Here, I is an mth-order identity matrix.

3.4 Final Stress. The final stresses are calculated according to
Eq. �1�, i.e.,

�r,final = �r,pre + �r,ope

�h,final = �h,pre + �h,ope

�z,final = �z,pre + �z,ope �18�

4 Controllable Stresses and Optimal Design of
FSRWPV

It can be seen that �pre depends on the pretensioning stress F
and the winding angle � of flat steel ribbons, and �ope is fixed if
the operating pressure P is determined. Thus, the distribution of
the final stresses in FSRWPV can only be adjusted by altering F
and the winding angle �, however, in a rather simple way. If a
particular distribution of final stresses in FSRWPV is desired, the
corresponding F and � shall be determined from the following
formula:

�pre = �final − �ope �19�

The details for calculating the hoop, radial, and axial stresses are
given in the following.

4.1 Hoop Stress. If we expect the final hoop stress is �h,final,
the prestress due to the pretension is

�h,pre = �h,final − �h,ope �20�

where �h,ope is given in Eq. �14�. Combining with Eq. �5� gives

��w cos2 �LhR−1 + M�FT = ��h,final�T − ��h,ope�T �21�

from which F can be determined.

4.2 Axial Stress. The axial stress is related to the hoop stress
and can be easily controlled through adjusting the winding angle
�. If we want to arrive at 2�z,final=��h,final, by continuously
changing � and calculating ��=2�z,final−��h,final, we can com-
pare �� to a small value �. If ����, then the corresponding
value of � is what we want. Here, � is the strength ratio between

the two stresses, and is usually taken to be 1.0, meaning the
strengths in the hoop direction and axial direction are equal for
FSRWPV.

4.3 Radial Stress. Because the radial stress in FSRWPV is
relatively small, it is not controlled in the present design method.
Rather, it is determined from the other two stresses according to
the equilibrium equations.

4.4 Optimal Design. From the above analysis, the flow chart

Fig. 4 Flow chart of optimal design
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of optimal design is given in Fig. 4. In the practical design and
manufacture, usually � can be chosen based on experience, and
this can simplify the calculation. After several times of calcula-
tion, F and � can be determined, and a FSRWPV can be manu-
factured accordingly, which shall have an optimized stress distri-
bution along the wall thickness.

5 Application

5.1 Parameters. A real FSRWPV has been designed and
manufactured with 24 layers of flat steel ribbons according to the
present approach. The parameters are given as follows: The oper-
ating pressure is 32 MPa; the inner diameter is 1000 mm; the
thickness of the inner shell is 20 mm; the thickness and width of
the flat steel ribbon are 3.8 mm and 8 mm, respectively; the ma-
terial of the inner shell is 304�0Cr18Ni9� with the allowable stress
���=137 MPa; and the flat steel ribbon is made of 16MnR
�SA516Gr70� with the allowable stress ���=186.7 MPa.

5.2 Stresses Optimal Analysis Result. As the design objects,
the final stress shall be uniform in every flat steel ribbon layer and
shall be zero in the inner shell when the vessel is in operation. In
order to achieve this target, the flow chart in Fig. 4 is followed by
letting �=1.0 and the initial winding angle �=25 deg. The
strength ratio is also selected as �=0.95, which indicates that the
strength in the axial direction is a little stronger than that in the
hoop direction. One optimal solution is eventually found with �
=27.7 deg and the pretensioning stresses Fk�k=1,2 , ¯ ,24�
�MPa� given in Table 1. The corresponding residual hoop stresses
�MPa� are also listed in the table.

The FSRWPV manufactured according to above values of F
and � has a uniform hoop stress distribution along the wall thick-
ness in the flat steel ribbon layers at �h,final=181.1 MPa and a zero
hoop stress in the inner shell when it is operated under a pressure
of 32 MPa. The corresponding axial stress can be found to be
172 MPa. The distributions of prestress-state, residual, and final
hoop stresses are shown in Figs. 5–7, respectively.

It is clear that any stress distribution could be achieved by
following the optimal design flow summarized in Fig. 4.

5.3 Application and Validation. Usually, the residual
stresses in FSPWPV are obtained by measuring the axial and cir-
cumferential shrinkages after manufacture �4,5,17�. Here, this
simple but proper method is also adopted. Before steel ribbons are
wound, the interior perimeter and length of the inner shell are
measured to be 1006.7 mm and 10143.5 mm, respectively. After
all flat steel ribbons are wound, its axial length and interior pe-
rimeter become 10139.7 mm and 1004.3 mm, respectively. This
means that the axial and circumferential shrinkages are 3.8 mm
and 2.4 mm respectively. The axial residual stress and hoop re-
sidual stress can then be calculated to be 77.2 MPa and
156.4 MPa, respectively. It proves that the axial strength almost
equals to the hoop strength at this winding angle under pretension
F. Because the FSRWPV is a linear elastic body, and the axial
stress is connected with the hoop stress through the winding angle

�, the ratio of its axial strain to hoop strain must keep the same
whenever under interior operating pressure or pretension F. In
fact, when the FSRWPV is tested under hydraulic pressure of
32 MPa, the length of FSRWPV is 10143.3 mm. This proves that
the axial stress in the inner shell of FSRWPV is still negative
stress under the operating pressure, and the residual stress is ap-
proximately zero. Though we do not measure the interior perim-
eter in this practical FSRWPV, it matches the theoretical value
very well �18�, and therefore its hoop stress also approaches zero
under the operating pressure. In conclusion, according to this op-
timal designing method that appropriately adjusts residual stress
and keeps axial strength equal to hoop strength, the final stress
distribution in FSRWPV can be even.

Table 1 Optimal results of pretension and the residual stresses in flat steel ribbon layers

Layer No.
�k�

Inner
shell 1 2 3 4 5 6 7 8 9 10 11 12

Fk 182.16 172.16 155.08 143.1 131.3 122.3 117.2 110.2 103.0 96.95 91.52 87.52
�h,pre −157.79 19.76 29.78 30.26 31.15 32.21 32.99 36.75 37.96 38.05 38.45 38.71 39.65

Layer No.
�k� 13 14 15 16 17 18 19 20 21 22 23 24

Fk 85.89 80.89 78.20 77.20 75.26 71.26 69.77 68.77 66.77 65.77 64.88 64.88
�h,pre 41.17 41.62 42.46 44.45 45.51 45.71 45.75 47.08 47.46 48.54 49.62 51.51

Fig. 5 Residual hoop stress

Fig. 6 Operating hoop stress
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6 Conclusion

The structure of FSRWPV has a discrete structure and preten-
sion can be incorporated into the wounded steel ribbons in an
arbitrary way. The well-known Zhu’s model is further extended to
a multilayered cylindrical vessel model, which involves the effect
of prestress in the flat steel ribbon layers and in the inner cylin-
drical shell. Based on this analytical model, an optimal design
method is presented, by which ideal stress distribution in FSR-
WPV in operation can be obtained through adjusting the preten-
sions in flat steel ribbons as well as the winding angle.

An example of a large FSRWPV, which is operating in high-
pressure hydrogen gas storage station, was designed and manufac-
tured according to the optimal approach, and finally was demon-
strated in this paper.

Nomenclature
F 	 pretensioning stress vector of the flat steel rib-

bons, MPa
Fk 	 pretensioning stress of the kth flat steel ribbon,

MPa
I 	 identity matrix

Lr 	 calculation matrix for radial stress in the pre-
stress state

Lh 	 calculation matrix for hoop stress in the pre-
stress state

Lz 	 calculation matrix for axial stress in the pre-
stress state

M 	 matrix related to the winding angle of flat steel
ribbon

Mr 	 calculation matrix for radial stress in operation
Mh 	 calculation matrix for hoop stress in operation
Mz 	 calculation matrix for axial stress in operation
Pz 	 axial pressure, MPa
Pr 	 radial pressure, MPa

Ri, Rj 	 inner and outer radii of the inner shell, mm
Ro 	 outer radius of FSRWPV, mm

Rk 	 inner radius of the kth layer of flat steel rib-
bon, k=1,2 , . . . ,m, mm

� 	 winding angle of the flat steel ribbon, deg
�i 	 thickness of the inner shell, mm

�w 	 thickness of a single flat steel ribbon, mm
�h, �r, �z 	 hoop, radial, and axial stresses, MPa

�rk �Prk� 	 stress acting on the finished part of vessel
caused by Fk, MPa

�Fk 	 stress in the ribbon direction, MPa
��� 	 allowable stress, MPa

� 	 strength ratio
� 	 small controlling parameter in the optimal

design

Subscripts
final 	 stress corresponding to the final state

pre 	 stress corresponding to the pretension
ope 	 stress corresponding to the operation
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Stability Analysis of an Inflatable
Vacuum Chamber
A lightweight “inflatable” tensioned-membrane-structure vacuum container is proposed
and its stability is analyzed. The proposed structure consists of a pressurized lobed
cylindrical “wall” surrounding a central evacuated space. Stability is analyzed by dis-
cretizing the system and diagonalizing the second derivative of the potential energy. The
structure is found to be stable when the pressure in the wall is greater than a critical
pressure. When membranes are nonelastic, the critical pressure is found to be greater
than the pressure required for equilibrium by a factor of 4 /3. When membranes have only
finite stiffness, a first-order correction to the critical pressure is found. Preliminary ex-
perimental data show that a stable structure can be made in this way, and that the
observed critical pressure is consistent with theory. It is also found that such structures
can be designed to have net positive buoyancy in air. �DOI: 10.1115/1.2912742�

Introduction
A structurally stable vacuum container that is of minimal total

mass for a given evacuated volume might have applications in
airship design �buoyancy control� �1�, aerospace �low aerody-
namic drag magnetic levitation launch systems� �2�, industry
�large industrial vacuum chambers�, transportation �supersonic
maglev trains� �2�, and solar energy production �solar chimney
technology� �3�. Unfortunately, issues of structural stability are
often overwhelming in the design of such a structure.

The history of lightweight vacuum containers is somewhat dis-
connected. Von Guericke created the first artificial vacuum around
1654 �4�. Traditional containers were thick heavy shells, the thick-
ness being required to give sufficient stability to prevent buckling.
In 1878, Tracy patented an “aircraft” that aimed to derive lift from
the buoyancy of a vacuum enclosed in an unstable lightweight
container �5�. In 1921, Armstrong patented another such craft that
claimed to stabilize its vacuum volume in an, in fact, unstable
inflated tensioned shell �6�. More recently, Michaelis and Forbes
have discussed the basic forces required to achieve equilibrium
�not stability� in a tensional vacuum vessel and have proposed the
lightweight or weightless inflatable vacuum chamber �7�. Lennon
and Pellegrino have discussed the stability of inflated structures
�8�; however, a stability analysis of an inflated vacuum vessel �the
purpose of the current work� has not been carried out.

In the current work, we propose an axially symmetric “cylin-
drical” structure composed of a “wall” surrounding a central
evacuated volume. The wall consists of pressurized regions within
a network of tensioned membranes. Rigorous stability analysis is
carried out by �a� discretizing the degrees of freedom of the sys-
tem, �b� forming the matrix, which represents the second deriva-
tive of the potential energy with respect to these degrees of free-
dom, and �c� diagonalizing the matrix to confirm positive
definiteness and, hence, stability. The proposed structure is found
to be stable when sufficiently pressurized. Judicious choice of
membrane materials and pressurizing gas can lead to a structure
that has over half of its total volume completely evacuated and net
positive buoyancy in air.

Proposed Structure
The proposed structure is shown and described in Fig. 1 and the

caption thereof. The inspiration for the present design is as fol-

lows. The radial members must exist to transmit the tension,
which will prevent the inner membrane from imploding. One can
see this by considering the mean stress tensor in the wall required
to give equilibrium as indicated by the method of sections. The
hydrostatic pressure of the gas contributes positively and equally
to all three eigenvalues of the mean stress tensor, but the method
of sections indicates �for any circular cylinder subjected to hydro-
static pressure from inside or outside� that the eigenvalues of the
mean stress tensor in the wall must be in the approximate ratio of
2 to 1 to 0 in the circumferential, axial, and radial directions,
respectively. Thus �in addition to the hydrostatic pressure�, there
must exist members under tension �the membranes� that contrib-
ute negatively to the eigenvalues corresponding to the radial and
axial directions. Thus, one adds membranes in the plane of the
axial and radial directions to carry these tensions. The lobes are
then added to terminate these tensions. If the curvature of the
lobes is decreased �compared to Fig. 1�, the tension in the lobes is
increased and somewhat redirected such that the eigenvalue of the
mean stress tensor in the circumferential direction is reduced re-
quiring additional pressure to maintain equilibrium. This is unde-
sirable and thus the curvature in the lobes is kept at the maximum
permitted by geometrical constraints. These radial members and
lobes are sufficient to establish equilibrium; however, this geom-
etry is highly unstable through what one might call the “accor-
dion” effect, similar to the instability of the hypothetical inflated
lobed column described in the introduction of Ref. �8�. Thus, the
addition of the circumferential members is necessary to eliminate
this instability.

Here, we briefly consider some practical points related to the
fabrication and use of such a vacuum chamber. Likely, pressure
will be supplied to a single compartment and inter-compartmental
holes will allow pressure to distribute to all compartments. We
note, for equilibrium, that the axial tension in each membrane is
approximately one-half the tension in the perpendicular direction.
We also note that the vacuum chamber will require additional
structures to close and seal the ends. The ends of the chamber may
be capped with a single membrane in the form of a concave hemi-
sphere. It might also be capped with a complex network of mem-
branes that extend the cylindrical wall into a convex hemispheri-
cal wall that closes the end. Where weight of the ends is of little
concern, the end might be capped with a traditional compressive
structure. We also note that the weight of the end structures as a
fraction of the total weight is inversely proportional to the length
and thus is negligible for long chambers. For chambers where the
length to diameter ratio is small, the end structures may enhance
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equilibrium and stability; in our analysis, however, we will con-
sider the situation where the end structures are very far from the
section under analysis.

Note About Units
Before analyzing the proposed structure, we first define our

notational convention. Each physical quantity with appropriate

units is represented by a barred symbol �i.e., R̄�; each correspond-
ing “reduced” quantity �a dimensionless number which is the
physical quantity divided by a reference value� is denoted by the
unbarred symbol �i.e., R�. Many of the equations that follow are
more conveniently expressed in terms of these dimensionless
quantities. The reference values for the physical parameters are
indicated with a subscript “unit” �i.e., Runit� and are given in Ap-
pendix A. For example, the reduced values of tension, potential
energy, and outside radius are

T �
T̄

Tunit
, U �

Ū

Uunit
, R �

R̄

Runit

respectively. In the text, we will refer to the physical quantities
and the reduced quantities interchangeably. For example, we will

refer to both Ū and U as “potential energy,” which meaning is
intended will be clear from the context.

Modeling of the Proposed Structure
We wish to analyze the stability of the structure depicted in Fig.

1. The structure is axially symmetric and of uniform cross section,
i.e., invariant under translations in the direction perpendicular to
the plane of the drawing. We will analyze the most general form
of this system having N sections �N=64 in Fig. 1� and having an
outside tension hoop of vertex radius R �reduced�, where the ver-
tex radius of the inside tension hoop is taken to be the reference

length Runit �R� R̄ /Runit�1.4 in Fig. 1�. For structural consider-
ations, the central vacuum will be assumed to be “complete” �ab-
solute pressure of exactly 0 atm�. The absolute pressure within the
wall is P �where the reference pressure Punit is the ambient pres-

sure�. �Recall P� P̄ / Punit.�
In order to analyze the equilibrium and stability of the system,

we must write its potential energy U as a function of configuration
or deformation. We characterize the configuration of the system
by coordinates xni specifying the radial and circumferential dis-
placements of the N inside vertices and the N outside vertices

according to the convention established in Fig. 2. Note in Fig. 2
that the first subscript specifies which unit cell and that the second
subscript specifies which degree of freedom within the unit cell.
Thus, xni=0 characterizes the nominal, intended, or undeformed
configuration, which corresponds to an extremum �local mini-
mum, local maximum, or saddle point� in the total potential en-
ergy for any given value of P. One then writes U as a function of
these xni. For equilibrium �or instantaneous balance of forces�, one
needs only to confirm that the first derivatives of U with respect to
the xni are all zero. For stability, the second derivative of U with
respect to any and all linear combinations of the xni must be non-
negative. Third- and higher-order derivatives are neglected in sta-
bility analysis as displacements are assumed to be small. For this
reason, our representation of U need be valid only to second order
about the nominal configuration.

In order to write an expression for U, we consider the forms of
potential energy that the system possesses. The system has two
types of potential energy, “solid-elastic” energy and “pressure-
volume” energy. Each tensioned membrane has a solid-elastic en-
ergy of the form

�Umembrane = T�l +
1

2
K�l2 �1�

where �l is the change in length of the membrane relative to the
equilibrium configuration, T is the pretensioning, and K is the
elastic constant. This equation is valid only to second order in �l
and thus the representation of �l need be valid only to second
order in the xni. To achieve equilibrium, T will be different for
different membranes and since the elastic constant of a membrane
K depends on its length, thickness, and elastic modulus, K will
also be different for different membranes.

Each volume under pressure has a pressure-volume energy of
the form

�Ugas = − �p�V �2�

where �p is the difference in pressure across the boundary defin-
ing the volume and �V is the change in volume relative to the
equilibrium configuration. In order for this equation to be valid to
second order in �V, one must make the simplifying assumption
that the pressure P is constant during any change in volume. Thus,
we assume the structure is connected to a large reservoir that
maintains constant pressure. If this is not true, pressure can in-
crease with a decrease in volume, thus enhancing stability. This
assumption can lead to a false conclusion that the system is un-
stable but can never lead to a false conclusion that the system is
stable. We call this a “failure-safe” assumption. As with �l, the
representation of �V must be valid to second order in the xni.

To simplify the form of U, we note that all pairs of circumfer-
ential nearest-neighbor vertices are connected by a curved mem-
brane and a straight membrane that enclose a pseudosemicylindri-
cal volume. The solid-elastic energy of these two membranes and
the pressure-volume energy of the enclosed space are all deter-
mined only by the distance between the pair of vertices. Thus,
there is no need to separately represent these energies in U as they

Fig. 1 General cross section of the proposed structure. The
wall of the structure is composed of membranes under tension
„solid lines… containing pressurized gas „heavily hatched area….
The wall encloses the evacuated space at the center „un-
hatched area… isolating that space from the ambient pressure
„lightly hatched area…. Runit, R̄, and N are the inner radius, outer
radius, and number of sections, respectively.

Fig. 2 Definition of the 4N degrees of freedom of the structure
xni
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can be absorbed into a single hypothetical “spring” with an “ef-
fective” pretensioning T and an effective elastic constant K �see a,
�, b, and � defined in the caption of Fig. 3�.

As an example of an effective tension, take the subsystem of
Fig. 4 consisting of two nodes, two membranes, and the enclosed
pressurized volume. �Here, in this example, the symbols � and x
are unrelated to previous uses of the same symbols.� We can write
the potential energy of the subsystem as a power series in the
horizontal displacement of Point B, x.

U = U0 + xU1 +
1

2
x2U2 +

1

3!
x3U3 + . . . where U1 =

dl1

dx
T1

+
dl2

dx
T2 −

dV

dx
�p = T1 + T2 cos �

We now identify U1 as the effective tension between Point A
and Point B and we see that it can be calculated from the mem-
brane tensions �T1 and T2�. �Note that if � is greater than 90 deg
and T2 is sufficiently large compared to T1 the effective tension U1
can be negative.�

Again to simplify calculation, we assume that there is an infini-
tesimal clearance angle between the curved membranes so that we
need not consider their interference with each other. If they were
to interfere, stability would be enhanced as this is an additional
constraint on the system. Again, this is a failure-safe assumption.

Stability Analysis
The �l’s and the �V’s are written as polynomials in the xni

retaining terms up to second order. These polynomials are inserted
into the general forms of �Umembrane and �Ugas to give U, which
we write as a power series in xni,

U = U0 − �
ni

Fnixni + �
nimj

1

2
Knimjxnixmj + . . . �3�

where U0��U�x=0, −Fni���U /�xni�x=0, and Knimj
���2U /�xni�xmj�x=0 �necessarily symmetric�. �Here the symbol
Knimj is unrelated to the previously used symbol K in Eq. �1�.� In
Eq. �3�, Knimj can be thought of as a “block” matrix �9� �p. 8� and
Fni and xni can be thought of as “block” vectors. We are able to

find all of the elements of Fni and Knimj by considering the con-
tributions to Eq. �3� from all of the hypothetical springs �1� and
the pressurized volumes �2� of Fig. 4 �see Appendixes B and C for
example contributions�. Because the potential energy is relative,
we are free to set U0=0. For equilibrium �all ẍni=0�, we require
Fni=0. It can be shown �see Appendix B and C� that Fn0=SC
−4�2A−2�P, Fn2=−SC−4�2RB+2�RQ, and Fn1=Fn3=0 where
�for notational convenience� we have defined S�R−1, C�c /S,
A�a /2�, B�b /2�R, Q� P−1, D�cos�� /2�, ��sin�� /2�, E
�cos�� /2�, and ��sin�� /2� as in “Nomenclature” below. Notice
that the A, B, and C terms originate from the membranes and the
P and Q terms originate from the pressurized gas. These condi-
tions lead to A= �SC−2�P� /4�2 and B=−�SC+2�RQ� /4�2R but
do not lead to a unique solution for A, B, and C. By the method of
sections, we find that the tension in a membrane T, the radius of
cylindrical curvature of the membrane r, and the pressure differ-
ence across the membrane �p are related by �p ·r=T. This deter-
mines the tension in the curved membranes of the outer and inner
lobes. Then requiring that the tension in the tension hoops be
non-negative, we find a constraint on the tension in the radial
membranes,

2�P

DS
� C �

2�RQ

DS
�4�

and since the left hand side �LHS� of Eq. �4� must be less than the
right hand side �RHS�, we find

P �
R

R − 1
�5�

as shown by Michaelis and Forbes �7�.
It can now be seen �given the spectrum of solutions for A, B,

and C� that the system is statically indeterminate. The actual val-
ues of A, B, and C will �in practice� depend on the precise un-
stressed lengths of the membranes. Slight variations in these un-
stressed lengths will determine the distribution of forces �and C�
when the load �pressure� is applied. The value of C may be diffi-
cult to control without very precise means of manufacture; how-
ever, we will assume that the structure can be fabricated with
enough precision that C can be made to fall within the range
required for equilibrium �4�. In practice, one may test the structure
through inflation to determine C. If C is found to lie outside the
desired range, the inner or outer tension hoops may be lengthened
or shortened to adjust C. One may note that the minimum value of
C �4� corresponds to zero tension in the inner tension hoop, the
maximum value of C �4� corresponds to zero tension in the outer
tension hoop, and the minimum value of P �5� corresponds to zero
tension in both the inner and outer tension hoops.

Note that, while it is true that the pretensioning in a membrane
cannot be negative, no such restriction applies to an effective ten-
sion �as illustrated in the example of Fig. 3�; for example, the
effective tension b is often negative.

Returning to the stability analysis, we wish to explore only
infinitesimal deformations about the equilibrium position and thus
terms third order in xni are negligible compared to the second-
order terms. Thus, we write simply U=�nimj

1
2Knimjxnixmj or

equivalently

U =
1

2 �
nimj

x
ni
* Knimjxmj �6�

�where the asterisk “*” denotes complex conjugate� as we are free
to do because the xni are real. Recall that Knimj is symmetric and
real and thus Hermitian and therefore has orthogonal eigenvectors
�9� �p. 268�. For stability, Knimj must be such that no real xni leads
to a U that is less than zero. To determine if Knimj is of such form,
we wish to make unitary transformation to a new basis 	k


=�k
niXk
nixni, where

Fig. 3 One “unit cell” of the idealized model of the system
showing the pretension c, the spring constant �, the effective
pretensions a and b, the effective spring constants � and �,
and pressures in bold type

Fig. 4 Subsystem for illustrating the meaning of effective
tension
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U =
1

2 �
k
l�

	
k

* �k
l�	l� �7�

such that �k
l�=�kl�
��k
=�nimjXk
niKnimjXmjl�
† the dagger de-

notes the Hermitian conjugate �e.g., Xmjl�
† =X

l�mj
* �, and �kl is the

Kronecker delta symbol �i.e., the matrix elements of the identity
matrix�. Thus, we have made a unitary similarity transformation to
the diagonal representation of Knimj, where the Xk
ni �which de-
fine the similarity transform� are the orthogonal eigenvectors of
Knimj with the eigenvalues �k
. The condition of stability is satis-
fied when the �k
 are non-negative. Thus, our problem reduces
simply to confirming that Knimj is positive semidefinite �or non-
negative definite �9� �p. 7��.

Confirming that Knimj is Positive Semidefinite
Beginning with Knimj, we make unitary similarity transforma-

tions with the goal of eventually finding the diagonal representa-
tion of Knimj. Because the system has rotational symmetry and
couplings only between nearest-neighbor unit cells, we can write
Knimj =�nmGij +��n+1�mJij +��n−1�mJij

T, where G describes the cou-
plings within a unit cell and J describes the couplings between
neighboring unit cells. �Given the cylindrical symmetry, the Kro-
necker delta symbol is understood to function cyclically �e.g.,
�0N=1�.� With the intent to diagonalize Knimj we note the symme-
try Knimj =K�n+1�i�m+1�j and thus Knimj commutes with the opera-

tion of rotating the entire system by one unit cell, �̂ �the matrix

elements of which are 
̂nimj ���n+1�m�ij�. Moreover, because ma-
trices that commute can be simultaneously diagonalized, each ei-
genvector of Knimj must completely lie within a subspace spanned

by the degenerate eigenvectors of �̂ characterized by a single
eigenvalue. Thus if we transform to a basis of the eigenvectors of

�̂, Knimj becomes block diagonal in blocks corresponding to the

distinct eigenvalues of �̂. We note that the eigenvectors of any
translation operator are Fourier components. Thus, following a
technique similar to that used in Ref. �10�, we block diagonalize
Knimj with a Fourier transform Vkn to give

Kkilj� = �
nm

VknKnimjVml
† �8�

where Vkn�e−ikn� /	N. We find

Kkilj� = �
nm

ei�lm−kn��

N
��nmGij + ��n+1�mJij + ��n−1�mJij

T� = �kl�Gij

+ eik�Jij + e−ik�Jij
T� � �klKkij� �9�

and thus the diagonal blocks of Kkilj� are

Kkij� = Gij + eik�Jij + e−ik�Jij
T �10�

We again realize that there must exist an additional transforma-
tion Wk
i such that �ijWk
iKkij� Wkj�

† =�
��k
 �i.e.,
Wk
iVkn=Xk
ni�, where Wkj�

† =W
k�j
* and thus the Wk
i are the

eigenvectors of Kkij� with eigenvalues �k
. Thus, our problem fur-
ther simplifies to confirming that each Kkij� has no negative eigen-
values. By considering all contributions to U, such as �Umembrane
�1� and �Ugas �2� �see Appendix B and C, respectively, for ex-
amples�, one can determine the matrix elements of Gij and Jij. For
example, G00 is the self-coupling elastic constant for any inside
node moving in the radial direction. This takes major contribu-
tions from the elastic constant of the radial membrane � and the
effective tension in the inside tension hoop a. It can be shown that
G00=�+2D2A+2�2�, G11=C+2�2A+2D2�, G22=�+2D2B
+2�2�, G33=C+2�2B+2D2�, G02=G20=−�, G13=G31=−C, and
all other elements in Gij equal zero, and that J00=−D2A+�2�

+�P, J11=�2A−D2�+�P, J22=−D2B+�2�−�Q, J33=�2B−D2�
−�Q, J01=−J10=�A+��+EP, J23=−J32=�B+��−EQ, and all
other elements in Jij equal zero.

To aid in confirming the positive definiteness of each Kkij� , we
will assume that all of the elastic constants ��, �, and �� are large
compared to the other variables �A, B, C, P, and Q�. This approxi-
mation is often valid for inflatable structures because the effective
elastic modulus �or Young’s modulus� of an ideal diatomic gas is
only 1.4 times its effective yield strength �or pressure�. This is in
contrast to solids, which often have elastic moduli several orders
of magnitude larger than their yield strengths. Thus, compared to
gases, solids are “stiff.” The same approximation was made by
Lennon and Pellegrino in their analysis �8�. We will call this the
“stiff-solid” approximation. We will later reexamine this approxi-
mation to find a first-order correction. We know that �, �, and �
must give positive contributions to the eigenvalues as they repre-
sent springs with only positive spring constants. Thus, in the limit
that they are large, the only possibility of finding a negative ei-
genvalue will be to look in the null space of the �, �, and � terms.

Now neglecting A, B, C, P, and Q terms and considering only
�, �, and � terms in Kkij� , we have Kkij� . A simple analysis indicates
that Kkij� has exactly one null vector �unnormalized�


− i� sin
k�

2
� cos

k�

2
− i� sin

k�

2
� cos

k�

2
�

for each k except k=0. When k=0, one finds the two null vectors,
�0 1 0 0� and �0 0 0 1�.

Thus, we have found two potentially unstable modes for k=0
and one for every other k for a total of N+1 modes allowed within
the stiff-solid approximation. The remaining 3N−1 modes have
eigenvalues going to positive infinity in the stiff-solid approxima-
tion and are thus stable and not of interest. We are interested only
in the N+1 modes in which the elastic constants �, �, and � do
not contribute to the eigenvalue and thus the stability is governed
by the pressure differences. It is in this N+1 dimensional space
that we expect to find the N+1 noninfinite energy eigenmodes of
the system. For k=0, which allows more than one mode, we must
again diagonalize in that two-dimensional subspace to find the
eigenmodes. We thus operate the Kkij� �including the A, B, C, P,
and Q terms� onto these null eigenvectors of Kkij� to determine if
their eigenvalues �considering all terms� are positive or negative.
One need not normalize the vectors in order to simply determine
the sign of the eigenvalue.

In the basis of the two k=0 modes allowed in the stiff-solid
approximation, the matrix elements of Kkij� are


RC − C

− C R−1C
�

The determinant of this matrix is found to be zero and the trace is
found to be positive indicating one zero eigenvalue and one posi-
tive eigenvalue. �The zero eigenvalue corresponds to overall rota-
tion of the system.� We continue with the remaining N−1 values
of k in search of the mode of greatest instability. By operating Kkij�
on the remaining null eigenvectors of Kkij� �where k does not equal
0�, we find that the sign of each eigenvalue is determined by the
sign of

�cos � − cos k���CS2 cos � − R sin � − CS2 cos k� + R cos k� sin ��

Note that when k=1 or N−1, we have an eigenvalue of zero
independent of C, R, or �. Linear combinations of these two
modes correspond to overall translation of the system in directions
perpendicular to the axis of the structure.

For 2�k�N−2, note that the sign of each eigenvalue is deter-
mined by the sign of
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CS2

R
−

�1 − cos k��sin �

cos � − cos k�

Taking first and second derivatives of this with respect to k, it is
quickly found that it is most negative when k=2 or N−2. So the
greatest possibility of making the eigenvalue less than zero is for
the modes k=2 and k=N−2. Hence, these are always the most
unstable modes and thus they determine the overall stability of the
system.

Note that the condition for overall stability of the system is thus

CS2

R
�

�1 − cos 2��sin �

cos � − cos 2�
�11�

From this, it is seen that a maximum C enhances stability; thus,
reducing tension in the outer tension hoop is desirable. However,
in keeping with our failure-safe assumptions, we will assume that
C takes its minimum value �4�. This leads to an expression for
stability in terms of pressure and radius,

P
S

R
�

4�cos
1

2
�
4

1 + 2 cos �
�12�

The right side of Eq. �12� goes to 4 /3 in the small-� limit �many
sections or large N� and does not exceed 4 /3 for any reasonable N
�larger than 3�. Thus, the failure-safe requirement for overall sta-
bility of the entire system given the stiff-solid approximation is

P �
4

3

R

R − 1
�13�

Note that the requirement for stability �13� compared to that of
equilibrium �5� is to simply increase the absolute pressure by a
factor of 4 /3.

One may be surprised that the result �13� is somewhat insensi-
tive to the precise value of N. Recall, however, that some N de-
pendence has been removed between Eqs. �12� and �13�. For ex-
ample, if we take Eq. �12� with N=4 ��=� /2�, the factor of 4 /3
in Eq. �13� becomes unity. In this case, however, the external and
internal lobes occupy a large fraction of the total volume of the
system and thus N=4 is not practical. To minimize the total vol-
ume of the system while maximizing the evacuated volume, large
values of N are of interest. In this limit, the RHS of Eq. �12� tends
to 4 /3 and never exceeds 4 /3; thus Eq. �13� is a general result that
is failure safe. In the large-N limit �given the stiff-solid approxi-
mation�, the complete potential energy of the system can be ap-
proximated as the pressure-volume energy of a system of two
coaxial thin-walled cylinders �of radii unity and R� constrained
such that each point on the inner cylinder remains a fixed distance
S�R−1 from the point on the outer cylinder that corresponds
when the cylinders take the nominal circular cross section. This
pressure-volume energy would depend on the overall distortion of
the cylinders, not on the roughness of the boundaries, which each
cylinder defines. Thus, when N is large, the system can be ap-
proximated by a continuous system for which the prefactor is
exactly 4 /3

Given a violation of the stability requirement �13�, failure by
the k=2 and k=N−2 modes may occur. It is instructive to discuss
these failures in direct physical terms. A linear combination of
these two modes is shown in Fig. 5. Note that the intended cylin-
drical form has distorted to give a pseudoelliptical cross section.
Other linear combinations of the two failure modes give the same
elliptical distortion but with the major axis of the ellipse differ-
ently oriented. From Fig. 5, one can see that the deformation is
allowed because, while the wall structure is bending stiff, it is
shear weak. The shear is concentrated at the quarter points ap-
proximately 45 deg from the major and minor axes of the ellipse.
This shear weakness �in contrast to the bending stiffness� can be
easily understood given the stiff-solid approximation. This ap-
proximation assumes that no elastic energy can be stored in the

membranes and hence the length of every membrane is fixed.
With no means of stretching any membrane, one can show that the
only way to accommodate bending of the wall structure �without
shear� is to eliminate the tension in either the outer or inner cir-
cumferential membranes such that they buckle. This leads to an
increase in potential energy of the wall because the pressurized
volume is then reduced. One can show that when the wall is bent
by this mechanism, the increase in potential energy is proportional
to the absolute value of the change in the wall’s curvature; be-
cause the absolute value function has an infinite second derivative
at its origin, this bending mode is “infinitely” stable �given the
stiff-solid approximation�. A similar consideration of the shearing
mode illuminates the origin of the weakness. To accommodate
shearing of the wall structure, there is no need to change the
length of any membrane. Like the bending, the shearing causes a
reduction in the pressurized volume, but one can show that this
change in volume is proportional to the square of the change in
curvature, in contrast to the bending mode where the change in
volume is proportional to the absolute value of the change in
curvature. Because the potential energy in this case has a finite
second derivative, the shearing mode is much more active than the
bending mode.

Stability Without the Stiff-Solid Approximation
The analysis thus far depends on the stiff-solid approximation.

Let us now reexamine that approximation. If one assumes that all
solid components of a system have infinite stiffness �as the stiff-
solid approximation assumes�, then any continuous solid system is
stable and there is no need to consider inflatable structures to
enhance stability. However, experience shows that as the wall of a
vacuum chamber becomes progressively thinner, the stiff-solid ap-
proximation at some point becomes inadequate. We will now
show that the same is true of inflatable vacuum chambers, that Eq.
�13� is inadequate when R is sufficiently small. To understand this,
we must go back and find the critical P that makes K2ij� positive
semidefinite without assuming that �, �, and � are large. To arrive
at the smallest possible values for �, �, and � �and thereby
achieve a failure-safe result�, we will assume that every mem-
brane is only thick enough to just meet its strength requirement.
�We continue to take C at its minimum value.� We further assume
that membranes comprising the inner and outer tension hoops are
of equal thickness and only of sufficient strength to withstand
venting of the chamber. We also neglect the small contributions
that the curved membranes make to the effective elastic constants
� and �. Given the unitless number M, which is the elastic modu-
lus divided by the tensile strength, these assumptions determine
the elastic constant of every membrane. We insert these explicit
forms of �, �, and � into K2ij� . We will still assume that � is small
�a failure-safe assumption� and thus expand each element of K2ij�
in a power series in � keeping only the leading nonzero term. For
every nonzero element, this is the term first order in �. We then
explicitly set the determinant to zero,

Fig. 5 Linear combination of k=2 mode and k=N−2 mode
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M33Q2P�3PS − 4R�S�4

R2 + M2− 3QP�3P2S4 + S2R�3R − 4� − P�3 − 18R + 27R2 − 22R3 + 6R4���4

R2S
+ M

− 18QP2�PS − R�S�4

R2 +
12P3�4

RS
= 0

�14�

to find the critical P. �Note that the elastic constant of each mem-
brane depends on its thickness, and the thickness chosen depends
on the yield strength. Thus, Eq. �14� is not dependent on elastic
modulus alone but on the ratio M.� If we take the limit that M is
large by only considering the term third order in M, we find that
this determinant equals zero when P= P0��4 /3�R / �R−1� as ex-
pected �13�. To find the first-order correction to P when M is not
so large, we consider the third- and second-order terms. We ex-
pand this in a power series in P− P0��P keeping only the zero-
and first-order terms in �P. Then solving this for �P and looking
at the term first order in M−1, we find that

�P

P0
�

1

M

R�11 + 3R + R2 + R3�
4�R − 1�2�R + 3�

�15�

which blows up as R goes to unity. In this limit we find

�P

P0
�

1

�R − 1�2M
�16�

For an example case where R=1.4 and M =65 �typical for carbon
fiber�, we find that �P / P0�15.2% �15�. A numerical solution of
Eq. �14� in the same case gives �P / P0=14.8%. In summary, by
comparing �P with P0 �16� we find that Eq. �13� is inadequate
when R is close to or less than 1+M−1/2.

Preliminary Experimental Data
A model was constructed of polyester film bonded with acrylic

adhesive having R=2 and N=12 �see Fig. 6�. The pressure in the
wall of the structure was raised above atmospheric pressure by
1.01�0.10 psi �6.96�0.69 kPa�. Partial evacuation of the central
volume was then begun. Stability was maintained until the central
pressure reached 0.72�0.10 psi �4.96�0.69 kPa� below atmo-
spheric pressure. At this point, the central volume began to de-
crease by means of the k=2 deformation, thus preventing further
reduction in pressure even though pumping continued. Pressure in
the wall of the structure was then raised to 2.0 psi �13.8 kPa�
above atmospheric pressure; however, before another measure-
ment could be made, an internal failure of the acrylic adhesive
redistributed stresses to rupture the exterior film and hence the
pressure was lost. The model was not repaired.

The current stability theory is not directly applicable to this
experiment because the absolute pressure in the central space is
not zero; however, note that Eqs. �1� and �2� are invariant under a
global offset in the hydrostatic pressure. Thus, the current experi-
ment can be analyzed by subtracting from all pressures, the pres-

sure in the central space. Therefore, the one data point obtained

has the same stability as P� P̄ / Punit= �1.01 psi+0.72 psi�
/0.72 psi=2.40. Given N=12 and R=2 and knowing the bounds
on C �4�, the theory predicts the critical P required for stability
between 2.27 and 2.55 �11�, which is consistent with this obser-
vation.

Application of Theory
To apply this theory to achieve a structure that is lighter than

air, careful consideration is required. A simple analysis shows that
inflatable vacuum chambers of a cylindrical form contain at least
twice as many moles of pressurized gas as the moles of gas they
displace �7�. Thus, pressurizing with air can never lead to a struc-
ture that is lighter-than-air. Additionally, one should note that, if a
particular design is found to possess sufficient strength to transmit
the required forces when evacuated, these forces can increase
when the chamber is vented �especially in the tension hoops�,
leading to failure of the system unless P is simultaneously re-
duced. However, if pressurization is accomplished with helium,
and membranes are constructed of advanced materials such as
Kevlar- or carbon-fiber composites, calculations show that such a
structure could be lighter-than-air with over half of its volume
completely evacuated and still resist failure when vented. For ex-
ample, if R�1.4 and the structure is constructed of 60% carbon
fiber/40% polyester composite with a safety factor of unity and
pressurized with helium, it will have a total mass about one-third
the mass of air it displaces and �with sufficiently large N� over
half of its total volume is completely evacuated.

If net positive buoyancy is not necessary, more basic materials
and pressurized air could be used while still reducing the required
amount of raw material by about two orders of magnitude com-
pared to the conventional chamber designs.

Future Directions
Preliminary analysis suggests that the structure of Fig. 1 can be

modified to further enhance stability and ease of fabrication.
While all of the modified structures shown in Fig. 7 might have
greater stability, the greatest stability is likely to be found in the
structure of Fig. 7�a� or 7�b� The structure of Fig. 7�c�, however,
appears to be easiest to fabricate.

The logic behind the modification of Fig. 1 to arrive at Fig. 7�a�
is that when the radial membranes are slightly diagonal, the shear-
ing mode �the mode of failure� may be somewhat more stable.
Because of this modification, the circumferential eigenvalue of the
mean stress tensor in the wall may be additionally reduced and
thus the pressure required for equilibrium might be slightly
greater �which is of no consequence unless this is the mode of
failure�. Thus, setting the angle of the radial membranes slightly
off the exact radial direction could reduce the critical pressure;
however, an excessive angle could result in the pressure required
for equilibrium becoming larger than the pressure required for
stability. Thus, it appears that there is an optimal angle given a
particular situation. Of course, the angle is related to N and R;
however, given N and R, there still remains some freedom in the
choice of this angle as one can have the membranes cross each
other or reflect off of each other at one �or more� points interme-
diate their length as in Fig. 7�b�.

The modification of Fig. 7�a� to arrive at Fig. 7�c� is simply to
increase ease of fabrication. All members still serve the same
purposes �lobes to terminate radial tensions and circumferentialFig. 6 Experimental model of the inflatable vacuum chamber
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members to prevent the “accordion” effect�, but the rearranged
geometry now permits construction from three continuous mem-
branes �a first membrane on the inner surface, a second membrane
on the outer surface, and a third membrane meandering between
the first and second�. Stability may be somewhat reduced com-
pared to the model of Fig. 7�a�, but such reduction is likely to be
minimal. Note that holes for equalization of pressure will exist in
the first and second membranes and that only the third membrane
�not directly exposed to the environment� constitutes the gas-tight
seal.

Rigorous stability analysis of these structures appears to be
more complex than that of the current model and has not yet been
carried out.
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Nomenclature
xni � displacement of the ith degree of freedom in

the nth unit cell
c and � � pretensioning T and elastic constant K of one

radial membrane, respectively
a and � � effective pretensioning T and effective elastic

constant K of one segment of the inside ten-
sion hoop, respectively

b and � � effective pretensioning T and effective elastic
constant K of one segment of the outside ten-
sion hoop, respectively

P � absolute pressure in the pressurized regions
R � vertex radius of the outside tension hoop
U � potential energy of the system
N � multiplicity of the axial symmetry �the system

has N-fold axial symmetry�
For notational convenience we define S�R−1, C�c /S, A
�a /2�, B�b /2�R, Q� P−1, ��2� /N, D�cos�� /2�,
��sin�� /2�, E�cos�� /2�= �D2−�2� /2, and ���sin �� /2=D�.

Appendix A
The “reference” values discussed in section “Note About Units”

above are given below. Here, �z is the differential length consid-
ered in the axial dimension.

Runit = xunit = lunit = radius to inside nodes

Punit = �punit = ambient pressure

Tunit = aunit = bunit = cunit = RunitPunit�z

Kunit = �unit = �unit = �unit = Punit�z

Uunit = Runit
2 Punit�z

Appendix B
As an example of Eq. �1�, we calculate �Umembrane for the

membrane in the outer tension hoop connecting the unit cells n
=5 and n=6.

�Umembrane = T�l +
1

2
K�l2

T = b = 2�BR

K = �

�l = l − l0

l0 = 2R�

l =���
�

− D

�

D
�

T

�
x52

x53

x62

x63

� + 2R��
2

+��
D

�

− D

�
�

T

�
x52

x53

x62

x63

��
2

where the first and second terms in parentheses are the displace-
ments parallel and perpendicular to the membrane, respectively.
The square root is then evaluated to give

�l = �
�

− D

�

D
�

T

�
x52

x53

x62

x63

� + �
x52

x53

x62

x63

�
T

1

4R��
D2 � − D2 �

� �2 − � �2

− D2 − � D2 − �

� �2 − � �2
�

��
x52

x53

x62

x63

� + ¯

where the ellipsis represents terms third order in the xni. We then
insert these into Eq. �1� and find that �Umembrane is equal to

Fig. 7 Three possible modifications of the structure of Fig. 1
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�
2BR�2

− 2BR�

2BR�2

2BR�
�

T

�
x52

x53

x62

x63

� +
1

2�
x52

x53

x62

x63

�
T

��
BD2 + ��2 B� − �� − BD2 + ��2 B� + ��

B� − �� B�2 + �D2 − B� − �� B�2 − �D2

− BD2 + ��2 − B� − �� BD2 + ��2 − B� + ��

B� + �� B�2 − �D2 − B� + �� B�2 + �D2
�

��
x52

x53

x62

x63

� + ¯

The elements of the first column vector contribute to Fni and the
elements of the matrix contribute to Knimj. For example, the con-
tribution to K5362 is −B�−��.

Appendix C
As an example of Eq. �2�, we calculate �Ugas for one sector of

the volume inside the outer tension hoop. We take the triangular
sector whose three vertices are the two nodes on the outer tension
hoop in unit cells n=7 and n=8 and the center of the vacuum
chamber.

�Ugas = − �p�V

�p = P − 1 = Q

�V = V − V0

V0 = �R2

V =
1

2
det
DR + Dx72 + �x73 − �R − �x72 + Dx73

DR + Dx82 − �x83 �R + �x82 + Dx83
�

�Ugas = �
− �QR

EQR

− �QR

− EQR
�

T

�
x72

x73

x82

x83

� +
1

2�
x72

x73

x82

x83

�
T

Q�
0 0 − � − E

0 0 E − �

− � E 0 0

− E − � 0 0
�

��
x72

x73

x82

x83

�
Again, the elements of the first column vector contribute to Fni
and the elements of the matrix contribute to Knimj. For example,
the contribution to F73 is −EQR. �Note the sign reversal on Fni in
Eq. �3�.�
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Evaluation of Planar Harmonic
Impedance for Periodic Elastic
Strips of Rectangular Cross
Section by Plate Mode Expansion
A system of periodic elastic strips (each one considered as a piece of a plate) is charac-
terized by a matrix relation between the Bloch series of displacement and traction at the
bottom side of the system. Both these mechanical fields are involved in the boundary
conditions at the contact plane between the strips and the substrate supporting a Ray-
leigh wave. The analysis exploits the mechanical field expansion over the plate modes,
including complex modes; numerical results satisfy the energy conservation law satisfac-
torily. The derived planar harmonic Green’s function provides an alternative tool for
investigation of surface waves propagation under periodic elastic strips, with respect to
pure numerical methods mostly applied in the surface acoustic wave devices literature.
Perfect agreement of the presented theory with the experimentally verified perturbation
model of thin strips is demonstrated. �DOI: 10.1115/1.2912931�

1 Introduction
In surface acoustic wave �SAW� electronic devices, thin metal

strips distribute the electric potential on a piezoelectric substrate
surface in order to generate SAWs on it �Fig. 1�. The SAW gen-
eration efficiency has the highest value if the strip spacing �a
period� equals half wavelength of SAW at given frequency �1�. At
low frequencies, the strips are relatively thin �with respect to their
width�, and their mechanical interaction with the propagating
SAWs can be evaluated by using the perturbation methods �2�. For
higher frequencies, however, the strips must be much thicker in
order to obtain sufficient electric conductivity. This makes the
perturbation methods inadequate, and more advanced analysis
must be applied accounting for the strip vibration. Pure numerical
methods are frequently applied by engineers designing SAW de-
vices �see Ref. �3�, for instance�.

In this paper, we develop a promising alternative method in
which each strip is considered as a piece of a plate supporting an
infinite system of modes. The modal wave fields are used for the
mechanical field expansion between the bottom side of the strip
contacting the substrate up to the upper free plane of the strip,
assuming the side planes of the plate �i.e., the strip sides� to be
stress free. This allows us to evaluate the traction at the strip
system-substrate contact plane resulting from the known displace-
ments at this plane; both wave fields being expanded in the spatial
Bloch series, natural for a periodic system of strips. This is the
strip impedance or the inverse of the planar harmonic Green’s
function for strips, sufficient for analysis of surface wave propa-
gation on the substrate �which is characterized by the correspond-
ing planar harmonic Green’s function of elastic half-space �4��,
covered by strips.

There are many papers in the existing literature �5–8� analyzing
similar problems of a half-infinite plate with free or fixed end and
free plate sides �a half-infinite, w-wide mechanical waveguide,
which is free or fixed at the end or attached to a substrate�. It was
shown that the traction at the fixed end of the plate is singular,
with intensity depending on the plate material and also on the

material of the attached substrate �9–14�. In the analogous prob-
lem considered here, a displacement is assumed known �in the
form of a truncated Bloch series� at the plate-substrate contact
plane, and the resulting traction at this plane is searched, provided
that the traction at the other plate cross section �the upper side of
the strip� is traction free. It characterizes the strip mechanical
property. The contacting body is not specified, however, because
we seek the strip characterization only, to be applied in the analy-
sis of different SAW devices made on different substrates.

The singular traction that arises at the strip corners causes slow
decaying of the Bloch series expansion of the wave field. This is
why we must include high number of complex modes in the
analysis. The truncation of the Bloch series is justified by this
physical argumentation that the influence of very high spatial har-
monics on the propagating SAWs having a wave number within
the first Brillouin zone �which is the typical case of SAW devices�
is expected to be technically negligible. In this paper, the results
are compared to the perturbation theory for thin strips, which
theory, accounting for only the two lowest Bloch components of
mechanical field, was proved to be quite accurate for thin strips,
and also very convenient in the analysis of SAW devices �15,16�.
Good agreement validates the above argumentation and the per-
turbation theory as well.

The paper is organized as follows. In the next section, modes in
an elastic waveguide �an infinite plate of thickness w� are ana-
lyzed. In the following section, the mode scattering at a traction-
free cross section of the waveguide is solved by using the ordinary
boundary conditions �T=0 expressed in spectral representation by
the Bloch series�, instead of the frequently applied spatial varia-
tional ones �6–8� �the plate edge resonances �17� are not expected
to appear in the considered short piece of a plate�. This scattering
matrix allows us to evaluate both the traction and the displace-
ment fields at the other plate cross section corresponding to the
bottom, substrate-contacting side of the strip, as dependent on the
modal amplitudes. Their elimination yields what we seek: the de-
pendence of the traction on the displacement, both expressed in
Bloch series. Final sections present computational details and a
proof that the analysis presented here primarily for thick strips is
also suitable for thin strips as well, by the comparison with the
perturbation model. Certain technical details of application of the
presented analysis in the theory of SAW devices are discussed in
conclusions.
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2 Plate Modes
The harmonic wave fields in isotropic solids characterized by

mass density � and Lamé constants � ,� are considered here, hav-
ing the general form �the time-harmonic dependence of frequency
� is dropped in further equations; note the field independence of
y=x2�:

ej�te−jqxe−jpz, x = x1, z = x3

ql,t = �kl,t
2 − p2 = − j�p2 − kl,t

2

kl = ���/�� + 2���1/2, kt = ���/��1/2 �1�

Both the wave fields of longitudinal wave having wave number kl
and shear wave �wave number kt� contribute to the displacement
field ui, i=1,3 and the resulting stress Tij, j=1,3, which can be
evaluated from the constitutive equations of the solid. By noticing
that the longitudinal wave displacement vector is parallel to the
wave vector ul �kl= �p ,ql� and that of shear wave is perpendicular
to its wave vector ut�kt= �p ,qt�, we obtain �18�

�ui� = uq�e−jqlxFl

e−jqtxFt
�, uq =

1

����
�ql p

p − qt
� �2�

�T1i� = T̄q�e−jqlxFl

e−jqtxFt
�, T̄q = − j

�/�
���

�qt
2 − kt

2 2pqt

2pql
2 kt

2 − 2qt
2 � �3�

where Fl,t are certain amplitudes of the considered waves, longi-
tudinal and shear, respectively �18�. The spectral variables p and
ql,t are wave numbers characterizing the plate modes propagation
�or decaying� in the z and x-directions, respectively; both can have
complex values. In the applied notations, the index q turns our
attention that both +ql,t and −ql,t can be included in the wave field
�this requires simultaneous replacement of their signs in both the
matrices and the corresponding exponential functions in the above
equations�.

The boundary-value problem is considered for the plate having
traction-free surfaces x= �w /2. By applying these two values of
x, the system of four homogeneous equations results for unknown
Fl,t

�:

�T1i��x� = T̄+q diag	e−jql�w/2+x�

e−jqt�w/2+x� 
�Fl
+

Ft
+ � + T̄−q diag	e−jql�w/2−x�

e−jqt�w/2−x� 

��Fl

−

Ft
− � = 0 �4�

�w /2 is included in the exponential functions to avoid their large
values for higher modes, provided that the values of ql,t are cho-
sen with negative imaginary part; the same will be applied in the
expression for displacements�. They have a nontrivial solution if
the determinant of the system matrix D vanishes, which is the
condition for the plate mode wave number pm. An infinite system
of eigenvalue-eigenvector pairs results as follows:

�pm,F�m��, F = �Fl
+;Ft

+;Fl
−;Ft

−� �5�

pm =
1

w
�ln�2�m� + j�
m +

1

2
��

F�m� =
1

2
�1;− j cos��m�;
cos

�

2
m − sin

�

2
m� ;

j
cos
�

2
m + sin

�

2
m��, m → � �6�

The last two equations present the asymptotic values �5� for large
modal number m, as it can be easily numerically checked �see Fig.
2�. Note that −pm as well as �p

m
* are also correct eigenvalues; the

associated eigenvectors can be evaluated as the null space of the
matrix of Eq. �4� �applied with x= �w /2� for given p.

There are two sets of modes: Those carrying the wave power
toward x→� �or vanishing there�, which will be denoted as +m
modes, and others propagating in opposite directions, denoted as
−m modes. Their wave numbers are p�m= � pm and F��m�, re-
spectively. The following mode arrangement �counted by m� is
applied for further convenience:

�pm� = �pr, . . . ,− pI,− p1,p
1
*,− p2,p

2
*, . . . �

where pr are positive real, pI is positive imaginary, and pi, i
=1,2 , . . . are complex valued wave numbers with positive imagi-
nary parts. All these modes satisfy the radiation conditions at z
→� �except for backward real modes not discussed here; see
comments in Ref. �8��.

At the plate cross section z=0, the modal wave field �the modal
indices are omitted below; note that ql,t also depend on pm�

�ui��x� = u+q diag	e−jql�w/2+x�

e−jqt�w/2+x� 
�Fl
+

Ft
+ � + u−q diag	e−jql�w/2−x�

e−jqt�w/2−x� 

��Fl

−

Ft
− � �7�

�T3i��x� = t+q diag	e−jql�w/2+x�

e−jqt�w/2+x� 
�Fl
+

Ft
+ � + t−q diag	e−jql�w/2−x�

e−jqt�w/2−x� 

��Fl

−

Ft
− � �8�

where tq is evaluated from constitutive equations like in Eq. �3�,

x x x x

x x x x

x x x x

x x x x

x x x x

x x x x x

z
0

-d
x x x x x x x x x x x x x x x

x x x x x x x x x x x x x x x

T=0

u, T
substrate

Rayleigh waves

SAW substrate
metal strips

electric
signal

w

d

x

x

x

x

plate modes

Fig. 1 An interdigital transducer comprising a number of pe-
riodic strips on a substrate. A piece of plate modeling the strip
is shown at the right.

Fig. 2 „a Distribution of the modal wave numbers on the com-
plex p-plane and their asymptotic approximation „circles…. „b…
Zero lines of real and imaginary parts of detˆD‰ on the p-plane
„thick and thin lines, respectively…; pm reside at their
intersections.
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tq = − j
�/�
���

� 2pql kt
2 − 2qt

2

kt
2 − 2ql

2 − 2pqt
� �9�

can be conveniently represented by the Fourier series in the do-
main x� �−w /2,w /2�:

f�x� = �
n

fne−jnWx, fn =�
−w/2

w/2

f�x�ejnWxdx/w �10�

W=2� /w. Making the corresponding easy integration over x
yields the following matrices cn

�, which replace the diagonal ma-
trices in Eqs. �7� and �8�:

cn
� = � j�− 1�n�

1 − exp�− jqlw�
2�n 	 qlw

0

0
1 − exp�− jqtw�

2�n 	 qtw
� �11�

for �m modes and nth Bloch series component:
exp�−jnWx� ,W=2� /w.

By multiplying the corresponding matrices, Eq. �7� transforms
into �in MATLAB notations�

�ui�n = u+qcn
+�Fl

+;Ft
+�

Un
+

+ u−qcn
−�Fl

−;Ft
−�

Un
−

and similarly for �T3i�, Eq. �8�, where Tn
�= t�qcn

��Fl
� ;Ft

�� �modal
indices dropped�. The Fourier expansion of the wave field in the
plate is the superposition of all the modal fields:


 ui

T3i
��x� = �

n,m

Un

��m�

Tn
��m� �a�me−jnWxe	jpmz �12�

where a�m are arbitrary amplitudes of modes propagating �or van-
ishing� toward z→ ��, respectively, and Un

� and Tn
� are the two-

component Bragg cells describing harmonics ��m Bragg orders�
of both components of displacement �ui� and stress �T3i�, i=1,3.

This field representation is convenient for checking whether the
numerically evaluated modes satisfy the energy conservation law.
The complex �evanescent� modes having complex pm cannot carry
real power along the plate, that is, along the axis z; hence, the real
part of j�u

i
*T3i /2 integrated over the plate thickness w=2� /W

should be zero if pm is complex. Performing easy integration
yields the complex power of the mode:

Pm = j�w�Um�*Tm/2 �13�

�asterisk means the Hermitian matrix conjugation; Um and Tm are
column vectors including all Bloch components enumerated by n�,
because none of the products of different Bloch orders contributes
to the modal power:

�
−w/2

w/2

exp�j�n1 − n2�Wx�dx = 0, n1 � n2

3 Scattering at the Free End of Half-Infinite Plate
Now, the fundamental scattering problem can be solved for the

half-infinite plate having stress-free end at z=0. Let the +m mode
�either truly propagating and having real pm or complex� propa-
gate from z=−� toward z=0, inducing stress T3i

�m� there, which
must be nullified by the reflected modes a−l to obtain

�T3i� = �
−l,n

�Tn
�m�a+m + Tn

�−l�a−l�e−jnWx = 0 �14�

�a−m� = S�a+m�, S = − �Tn
�−l�� \ �Tn

�+m�� �15�

where S is the scattering matrix. In order to effectively evaluate it,
we need to truncate the Fourier and modal expansion in Eq. �12�.
For m spanning up to M �it is important not to miss any modes
below M�, there are M “plus” modes. In order to have division of
the square matrices Tn

��m� defining S, it is required that the Fourier
series include N=M /2 harmonics for each T3i, i=1,3, which N is
preferred to be an odd number in order to obtain spectrum in
symmetric domain −N� /2
n
N� /2. Hence, M =2N=4N�+2 is
the required number of modes for the applied truncated spectrum
resulting in both square matrices: �Tn

��m��.
This kind of truncation is possible due to the specific

asymptotic property of ql,t for large p�m, Eq. �6�. Indeed, careful
inspection of Eq. �11�, where ql,t→ �mW /2 for large �m�, shows
that Mth mode mostly contributes to ��M /2�th harmonics, which
should be the last accounted for in the truncated square matrix.
Figure 3 presents example spatial spectra of �Tn

�m�� and the map of
the matrix �Tn

�m�� with n spanning over somewhat wider domain
with respect to the above-discussed limits in order to present the
matrix truncation marked by the square frame. The evaluated scat-
tering matrix S must satisfy the energy conservation law for the
real propagating modes. This feature can be used for verification
of the computed results �doing this, however, one needs to pay
attention that F�m�, as evaluated by MATLAB, satisfy F*F=1; an-
other normalization is required to conveniently obtain Pm
= �am�2 /2�.

4 Piece of Plate as a Model of Strip
By combining the incident and reflected modal wave fields at

the cross section z=−d, the displacements and stress result at the
bottom strip side. The following problem can now be formulated:
Find a set of incident �+m� modes to obtain given displacement
field at z=−d, then evaluate the resulting traction there. This will
be the traction yielded by the d-long piece of the plate excited by
the known displacements at its bottom end �at z=−d� and having
the other end traction free �at z=0�. This is exactly what is needed
for description of mechanical properties of the strip contacting a
substrate and interacting with SAW propagating on it. Repre-
sented by the Fourier series, the wave fields at z=−d are �un� and
�tn�, where n is the harmonics number �Bloch order� and un, tn are
Bloch cells of �ui�exp�−jnKx� and �T3i�exp�−jnKx�, i=1,3, re-
spectively.

By noticing that the incident mode amplitude a+m at z=−d
changes into a+m exp�−jpmd� at z=0 and that the reflected modes

Bloch order

m
od

al
nu

m
be

r

Map of ( |T
n
(m)| )1/2

−100 −50 0 50 100

150

100

50

Fig. 3 A contour map of the matrix �T�—its characteristic V-like
shape „shown upside down… indicates a localized spectrum de-
pendence on the modal number; the spectra of 183rd and 91st
modes are drawn in thick lines. Thin frame shows the truncated
spectrum.
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at z=0 change their amplitude similarly at z=−d �the correspond-
ing exponential function is again exp�−jpmd� because p−m=−pm�,
the above described solution for the wave field at z=−d takes the
form

u = �U+ + U−E�a+, t = �T+ + T−E�a+

E = diag�exp�− jpmd��S diag�exp�− jpmd�� �16�

as represented by Fourier series, where the square matrices are
U�= �Un

��m�� and T�= �Tn
��m��. The amplitudes a+= �am� are

evaluated to obtain given u. This yields the traction t dependent
on u, both in the spectral representations:

t = hu, h = �T+ + T−E�/�U+ + U−E� �17�

where h is the strip impedance or the inverse of the w-based
spectral representation of the Green’s function of an elastic strip
of width w and thickness d. �Strictly, the Green’s function ex-
presses displacement by traction, u=h−1t, and the acoustic imped-
ance expresses traction by displacement velocity; hence, it is
�j��−1h.� Careful inspection of the matrix h proves that the real
part of its diagonal must vanish in order to satisfy the energy
conservation law: Re�j�u*t��Re�j� diag�h��=0. Moreover, due
to the symmetry of positive and negative harmonics, the 2�2
matrices �hij� of Bloch cells of h describing the relations between
harmonics of stress T3i and displacement uj �i.e., of given Bloch
order n ,m� possess this symmetry �superscript T means matrix
transposition�:

�hn,m� = �h−n,−m�T, hnm = �hij� �18�

which symmetry can be exploited for improving the computed
values of h.

5 Periodic Strips
Although the above characterization of the strip mechanical

properties is sufficient, it is not convenient for application in the
analysis of SAW propagation under �-periodic strips, where the
surface wave field is represented in a �-based Bloch series like
�K=2� /��:

�ui� = �
k

Uke
−jkKxe−jrx, r � �0,K� �19�

for the surface displacements, and similarly for the surface trac-
tion �Tk�.

To obtain the required transformation of the harmonic Green’s
function h into the �-representation, we first notice that the sur-
face traction vanishes between strips, while traction and displace-
ments are equal on both sides of the contact area of strips and the
substrate. The corresponding transformations are as follows:

un =�
−w/2

w/2

ejnWx�
k

Uke
−j�r+kK�xdx/w

Tk =�
−w/2

w/2

ej�r+kK�x�
n

tne−jnWxdx/� �20�

where un, tn are in w-representation, Eq. �17�, and Uk, Tk are in
the searched �-representation. The above substituted into Eq. �17�
results in

T = HU, H =
w

�
CThC

C = �Cnk�, Cnk = �1 0

0 1
� sin ��n − r/W − kK/W�

��n − r/W − kK/W�
�21�

The matrix form of Cnk results from the applied structure of U and
T, alternately comprising harmonics of u1, u3 and T31, T33, respec-
tively.

The matrix H−1 is called the planar harmonic Green’s function
for periodic strips. Note that only the last transformation, Eq. �20�,
depends on r, which is the searched SAW wave number account-
ing for the strip interaction with the substrate. To verify the evalu-
ation of H, one may apply the energy conservation law that re-
quires that the power P delivered to a lossless strip must vanish.
Due to the earlier discussed property of the Fourier series repre-
sentation of both U and T, we obtain that

P � Im�diag�H�� = 0 �22�

The applied spectrum truncation may result in certain departure
from the above condition.

6 Numerical Details
In the numerical example presented in the next section, we

applied kl,t / �2��=0.541 and 1, respectively �aluminum strips�, w
equal to a quarter of the Rayleigh wavelength 2� /kR, and �
=2w, r=K /2=kR, which are typical cases of SAW devices work-
ing at their fundamental frequency �with two strips per SAW pe-
riod�.

There are two propagating modes having positive real pa, pb:
one below, and the other above the cutoff wave number of bulk
waves kt, existing in such a plate. There is also one positive imagi-
nary pI. Another 90 computed complex pi in the first quadrant of
the complex p plane are shown in Fig. 2 �asterisks�. Appended by
�p

i
* and −pi, they yield a set of 366 wave numbers, which were

arranged in the following data array:

�pa;pb;− pI; ¯ ;− pm;p
m
* ; ¯ pM;

‘+’ modes

− pa;− pb;pI; ¯ ;pm; − p
m
* ; ¯ ; pM�

;−

‘−’ modes

The corresponding eigenvectors F�m� were calculated next by re-
peating the null-vector evaluation of the matrix D at given pm.
The “rule of thumb” for choosing M is that the highest complex
mode accounted for should sufficiently decay over the distance d,
that is, by applying Eq. �5�: exp�−�Md /w��1. The applied value
of M in the computation of Figs. 2 and 3 resulted in the matrix
condition numbers about 8.E2 and 3.E4, in evaluation of S and H,
respectively.

Evaluation of all eigenvalues pm, m
M is crucial for the above
matrix conditioning. Happily, rather simple geometry of zero lines
of real and imaginary parts of det�D� on the complex plane p, see
the example presented in Fig. 2�b�, helps much in the numerical
evaluation of a complete set of all pm for m
M. See Ref. �5� for
further detailed discussion.

7 Perturbation Theory Verified
The perturbation theory �2� models thin periodic strips by a

sinusoidal corrugation of the substrate surface. It yields the fol-
lowing dependence of the resulting traction on the surface dis-
placements �both at a certain midplane� for two lowest harmonics
accounted for, 0th and −1st, having wave numbers r and r−K,
respectively:
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�T31

T33
�

0

=
d

2���2 − 4
r2

kt
2
1 −

kl
2

kt
2� 0

0 ��2 ��u1

u3
�

0

+
d

����2 + 4
r�K − r�

kt
2 
1 −

kl
2

kt
2� 0

0 ��2 ��u1

u3
�

−1

�23�

and similarly for �T3i�−1 with substitutions r↔K−r, and in sub-
scripts: 0↔−1. The above two matrices correspond to the follow-
ing Bloch cells: H0,0, H0,−1 �in Fig. 4, Bloch orders are shown in
superscripts for convenience; subscripts represent the Bloch cell
matrix components�.

For the case of Bragg reflection, r=K /2, the dependence of the
diagonal matrix elements on d is shown in Fig. 4, starting from d
as low as 0.001�t �this value is perhaps too small for the applied
truncated system of modes�; the results of Eq. �23� are presented
at d=0 for comparison �the perturbation theory yields zero off-
diagonal elements, while they are nonzero, although small, in the
computed matrices Hi,j�. The agreement for the most important
diagonal matrix elements appears to be very satisfactory. It is also
interesting that the dependence of the above matrix elements on r
compares well to perturbation results �inset�. This verifies both the
developed here and the perturbation theories.

8 Conclusions
Consider the simplest application of the above strip model in

the analysis of surface wave propagation in the substrate with
corrugated surface. Periodic groove grating �19� can be, other-
wise, considered as periodic strips made of the substrate material.
The planar harmonic Green’s function of an elastic substrate �a
half-space� is in notation of �18�

U = GT

G =
j

�R
� qlkt

2 − p�qt
2 − p2 − 2qlqt�

p�qt
2 − p2 − 2qlqt� qtkt

2 � �24�

where the Rayleigh determinant R= �kt
2−2p2�2+4p2qlqt and U, T

describe the displacement and traction on the substrate surface z
=0. By taking the evaluated H for periodic strips, one may for-
mulate the boundary-value problem for SAW propagation in the
system as follows:

U = G̃HU �25�

where G̃ is the set of G evaluated at p=r+nK, corresponding to
the spectral distribution applied in H. Similar boundary-value
problems may be formulated for piezoelectric substrate, the fun-
damental one for the theory of interdigital transducers �1�.

This shows the value of the above presented theoretical results
in modeling of periodic strips. Analogous problems find interest in
geophysics �5� and qualitative nondestructive testing �19�. It can
also be applied in developing the theory old SAW comb transduc-
ers, either having separately excited strips �20� or excited by in-
cident bulk waves �21�. The analysis may also be of certain value
for designing micromechanical systems, where some elements can
be considered as joined, forklike systems of three strips. The
boundary conditions at their junction would be correspondingly
formulated in spectral domain �in Bloch series�. Naturally, prop-
erties of all the above devices can be computed by using the
available numerical software. The novel approach, however, may
contribute to physical understanding of the involved wave phe-
nomena of vibrating acoustic systems that is very important in
optimization of complicated constructions.

The presented analysis provides the required generalization
�22� of the earlier theory of SAW devices for applications at
higher frequencies where thicker strips are necessary in order to
minimize their electric resistivity.
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Modeling of Hydraulic Pipeline
Transients Accompanied With
Cavitation and Gas Bubbles Using
Parallel Genetic Algorithms
Mathematical models of pressure transients accompanied with cavitation and gas
bubbles are studied in this paper to describe the flow behavior in a hydraulic pipeline.
The reasonable prediction for pressure transients in a low pressure hydraulic pipeline
largely depends on several unknown parameters involved in the mathematical models,
including the initial gas bubble volumes in hydraulic oils, gas releasing and resolving
time constants. In order to identify the parameters in the mathematical models and to
shorten the computation time of the identification, a new method—parallel genetic algo-
rithm (PGA)—is applied in this paper. Based on the least-square errors between the
experimental data and simulation results, the fitness function of parallel genetic algo-
rithms is programed and implemented. The global optimal parameters for hydraulic
pipeline pressure transient models are obtained. The computation time of parallel genetic
algorithms is much shorter than that of serial genetic algorithms. By using PGAs, the
executing time is 20 h. However, it takes about 204 h by using GAs. Simulation results
with identified parameters obtained by parallel genetic algorithms agree well with the
experimental data. The comparison between simulation results and the experimental data
indicates that parallel genetic algorithms are feasible and efficient to estimate the un-
known parameters in hydraulic pipeline transient models accompanied with cavitation
and gas bubbles. �DOI: 10.1115/1.2912934�

Keywords: pressure transients, cavitation, gas bubbles, parallel genetic algorithms, pa-
rameter identification

1 Introduction
Pressure transients accompanied with cavitation and gas

bubbles inside low pressure hydraulic pipelines, such as the suc-
tion line of a hydraulic pump and the return line of a hydraulic
system, are often generated due to the sudden standstill of hydrau-
lic pumps or closure of valves on the pipeline where the working
pressure is near to the atmospheric pressure. The presence of cavi-
tation and gas bubbles not only badly influences the performance
of hydraulic pumps and systems, but also affects the pressure
transient behavior in hydraulic pipelines. Consequently, the pre-
diction for pressure transients accompanied with cavitation and
gas bubbles in low pressure hydraulic pipelines is more difficult
than that in high pressure hydraulic pipelines. The reasonable pre-
diction of pressure transients accompanied with cavitation and gas
bubbles in low pressure hydraulic pipelines is of critical impor-
tance for the analysis and design of hydraulic pumps and other
components, although it is more difficult and complex than that
without cavitation and gas bubbles �1–3�. A rather complete over-
view of the transient vaporous cavitation has been given by Ber-
gant et al. �4�.

In the past few years, the majority of research has focused on
models of pressure transients occurring in high pressure pipelines
�5�. Although these models have attained a good level of accuracy,
the development of a mathematical model for flow behaviors in
low pressure pipelines accompanied with cavitation and gas
bubbles has proved to be more difficult. From the previous inves-

tigations �6,7�, one problem at present is that there is no agree-
ment yet on the gas releasing and resolving time constants and the
correct assumption for initial gas bubble volumes that should be
used in the calculation. In order to numerically simulate pressure
transients accompanied with cavitation and gas bubbles in low
pressure hydraulic pipelines, it is necessary to develop appropriate
pressure transient models. In this paper, a technique—parallel ge-
netic algorithms—is presented to identify the involved unknown
parameters in the fluid transient models, for the pressure transient
prediction accompanied with cavitation and gas bubbles.

Parallel genetic algorithms �PGAs� are similar to the sequential
genetic algorithms �GAs� �8�. They are based on the natural evo-
lutionary principle. However, PGA can be used to improve the
quality of solutions and to reduce the computing time �9�. Alba
and Troya �10� proposed six different models of PGA. James et al.
�11� investigated the performance of the same global PGA on two
popular parallel architectures to investigate the interaction of par-
allel platform choice and GA design. Kirley and Li �12� presented
and implemented PGA on a hypercube parallel computer. Li and
Cho �13� implemented PGA on PCs based on Linux clusters with
message passing interface �MPI� libraries in C��. Sena et al. �14�
designed and implemented PGA on PCs based on Linux clusters
with parallel virtual machine �PVM� libraries. MPI or PVM func-
tions are, in fact, the standard nowadays, but they are complicated
and require lots of coding and fine tuning. In addition, hypercube
parallel computers are expensive and Linux system is complex
and not widespread in engineering application areas. Instead, in
this paper, MATLAB distribute computing toolbox �DCT� and MAT-

LAB GA toolbox are chosen to implement the parameter identifi-
cation in Windows XP system by PGA, which are actualized in
several computers. PGA can reduce the executing time signifi-
cantly compared with GA running on a single computer. Hence,
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parameter identification is carried out in this paper by means of
PGA whose fitness function is the sum of the least-square errors
between the experimental and simulation results. The PGAs are
applied to perform a global search and obtain the optimal param-
eters for pressure transient models.

2 Problem Description
The fluid transient problem in a horizontal hydraulic pipeline is

studied in this paper. The horizontal hydraulic pipeline with a
reservoir at one end and a valve at the other end is shown in Fig.
1. The parameters of the pipeline are shown in Table 1. The res-
ervoir supplies a constant upstream pressure. If there is a steady
flow flowing to the valve side from the reservoir side inside the
pipeline, after the valve is suddenly shut off, there will be a fluid
transient in the form of pressure pulsations propagating along the
pipeline. If the pressure inside the pipeline falls below the atmo-
spheric pressure or even reaches the vapor pressure of the hydrau-
lic oil, gas bubbles and cavitation will occur inside the fluid.

Suppose that the initial flow inside the pipeline is one-
dimensional single-phase unsteady compressible flow. If outside
forces and heat exchanging are ignored, the mathematical models
for the fluid transients in the low pressure hydraulic pipeline can
be described as

1

C0
2

�p

�t
+

�

�r0
2

�q

�x
= 0 �1�

�

�r0
2

�q

�t
+

�p

�x
+ F�q� + �g sin �0 = 0 �2�

C0 =�Beff

�
�3�

F�q� = F0 +
1

2�
i=1

k

Yi �4�

where 1
2�i=1

k Yi was given in Ref. �15� and F0=8��q /�r0
4. If the

pipeline is horizontal, the gravity term can be neglected. If the
elasticity of pipe wall is taken into account, the effective bulk
modulus of gas-liquid mixture Beff in the pipeline can be ex-
pressed as

1

Beff
=

1

Bpipe
+

1

Bliquid
+

Vgas

V0
� 1

Bgas
−

1

Bliquid
� �5�

In this paper, both Bliquid and Bgas are taken as constants in order
to simplify the simulation. Formula �5� shows that the cavitation
and gas bubbles influence the fluid transients by influencing the
effective bulk modulus of the gas-liquid mixture. Hence, it is im-
portant to take the volume of cavitation and gas bubbles into
account in the fluid transient models.

We assume the following.

�1� Cavitation starts to grow when the pressure reaches below
or equals to the vapor pressure �near zero�. On the contrary,
cavitation disappears.

�2� Pressure equals to the vapor pressure at vaporous condi-
tions.

�3� Volume of gas bubbles increases when the pressure goes
below the saturation pressure �assumed atmospheric pres-
sure in this paper�. On the contrary, the volume of gas
bubbles decreases.

The volume of cavitation and gas bubbles can be calculated
from the following formulas:

Vgas = Vgasb + Vcav �6�

dVgas

dt
= qout − qin, p � pvapor

Vcav = 0, p � pvapor �7�

Vgasb = Vingas + ve − v �8�

dv
dt

=
v� − v

	
, 	 = 		out, p � pe

	in, p � pe

 �9�

ve = S · V0 �10�

where S is 0.1 for hydraulic oils and 0.02 for water at room tem-
perature and atmospheric pressure �16�. Moreover, from Henry’s
law for dissolved gas in liquid, it can be written as

v� = ve
p

pe
�11�

Formulas �8� and �9� show that not only the initial gas volume
but also the gas releasing time constant and the gas resolving time
constant will influence the gas bubble volumes inside the oils at a
certain time during the transients.

In order to investigate the influence of initial gas bubble vol-
umes on the fluid transients, simulations are carried out on the
assumption of initial gas bubble volumes being 0.1%, 1%, and 3%
of the oil volume, respectively. The gas releasing time constant
and the gas resolving time constant are 5 s and 10 s in all the
simulations, respectively. The predicted pressure pulsations inside
the pipeline are shown in Fig. 2. An upwind/central finite differ-
ence method is used to calculate the pipeline transients after the
pipeline is divided into n number of elements in length, as shown
in Fig. 1. Simulation results when the element number is 20, 40,
or 80 are given in Fig. 10 in Appendix B. It can be seen that the
predicted pressure pulsations are almost consistent with each other
at the first three pressure peaks when the element number is 20,
40, and 80. Hence, for those problems that only the first three
pressure peaks are concerned, 20 elements are enough. If the
fourth pressure peaks are considered, the pressure pulsations are
consistent when the element number is 40 and 80. Therefore, for
the problem that four pressure peaks are concerned in this paper,
40 elements are enough. The simulation results in Fig. 2 show the
pressure pulsations at the eighth element.

Figure 2 shows that the predicted pressure transients change
largely with the initial gas bubble volumes inside the pipeline. The

Fig. 1 Studied pipeline

Table 1 Parameters of the pipeline

Parameters Value

Bulk modulus of hydraulic oil Bliquid, Pa 1.9E009
Bulk modulus of gas Bgas, Pa 3E007
Kinetic viscosity of hydraulic oil �, mm2 /s 44
Density of hydraulic oil at 25°C �, kg /m3 875
Reservoir pressure p0, Pa 1.025E005
Initial flow rate q, m3 /s 8.49E−005
Pipeline diameter d, m 0.0102
Length of pipeline L, m 3.856
Wall thickness of pipeline h, m 0.0015
Modulus of elasticity of pipe wall material E, Pa 105.6E009
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oscillations on the top of the first pressure peak are the numerical
oscillations. The larger the element number is, the less the numeri-
cal oscillations. However, the oscillations can hardly be removed
entirely.

The initial gas volume Vingas can also be estimated from the
Joukowsky equation

C0 =
A
p

�
q
�12�

If the gas content ratio � is �=Vgas /V0, the density of gas-oil
mixture � can be expressed as

� = ��gas + �1 − ���liquid �13�
By combining Eqs. �3�, �12�, and �13�, the initial gas volume

Vingas can be estimated.
Similarly, being a function of pressure and time, the gas releas-

ing and resolving rates are unknown for the fluid transient models.
When the pressure in a hydraulic pipe goes down, gas absorbed in
hydraulic oils tends to come out in the form of gas bubbles in the
oil. The volume of gas bubbles will increase. Moreover, when the
pressure rises up, gas bubbles will go back to the solution. The
volume of gas bubbles will decrease. From experience and previ-
ously published study �17�, it is accepted that the gas resolving
time constant and gas releasing time constant influence the pres-
sure pulsations in hydraulic pipelines significantly. In order to
investigate the influence of time constants on the pipeline tran-
sients, simulations are carried out using the three groups of pa-
rameters in Table 2. The three groups of gas releasing and resolv-
ing time constants were published in Ref. �18�. The initial gas
bubble volume was estimated from the Joukowsky equation. The
predicted pressure pulsations are shown in Fig. 3 and compared
with experimental data, which will be introduced in the later part
of this paper.

Figure 3 shows that gas releasing time constant and gas resolv-
ing time constant have significant effects on the pressure tran-
sients in hydraulic pipelines accompanied with cavitation and gas
bubbles, especially on the durations between pressure peaks. In

order to develop an accurate mathematical model of the pipeline
pressure transients, the gas releasing time constant and gas resolv-
ing time constant are the vital identification parameters.

3 Parallel Genetic Algorithms
PGAs are parallel stochastic optimization methods for solving

constrained and unconstrained optimization problems based on
biological evolution theories. In PGA, there is always a selection-
crossover-mutation cycle the same as in serial GAs. Parameter
identification problems for pressure transient modeling accompa-
nied with cavitation and gas bubbles involve computationally ex-
pensive fitness functions. For each generation of GAs, the fitness
function must be evaluated on the local computer serially. It may
take several days to get a result. The bottleneck is the serial cal-
culation of the individual fitness value in GAs and the number of
individual fitness calculations. Usually, for better accuracy, the
GAs should be terminated after enough number of generations
and each population should have enough individuals. As the cal-
culating time of the fitness function is higher than the communi-
cation time between the master processor and the slave proces-
sors, it is necessary to distribute the fitness evaluations across
processors and compute them in parallel.

3.1 Identified Parameters. From the introduction in Sec. 2,
the unknown parameters for the fluid transient modeling accom-
panied with cavitation and gas bubbles are the gas releasing time
constant and the gas resolving time constant. As the simulation
and experimental errors exist, the initial gas volume estimated
from Eq. �12� may not be accurate. In this paper, the initial gas
volume is taken as a parameter that needs to be identified too.

3.2 Encoding. PGAs work with encoded parameters rather
than parameters themselves. In order to optimize parameters in
pressure transient models, parameters need to be encoded sepa-
rately as binary strings. The parameters are a set of real numbers
and later they are encoded as bit strings and concatenated to form
chromosomes. The length of a chromosome depends on the re-
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Fig. 2 Pressure pulsations with different initial volumes of gas
bubbles

Table 2 Simulation parameters with different gas releasing and resolving time constants

Group No.
Gas releasing time

	out, s
Gas resolving time

	in, s
Initial volume of gas

bubbles Vingas, m3
Volume of

element V0, m3

1 0.43 4.44 3.938442E−009 7.876884E−006
2 5.13 8.86 3.938442E−009 7.876884E−006
3 65 557 3.938442E−009 7.876884E−006
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Fig. 3 Pressure pulsations with different time constants of
gas releasing and resolving „see Table 2…
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quired precision. As each parameter is encoded to B binary bits
and the number of identified parameters is 3, the total length of a
chromosome is 3B bits and the solution space is 23B. In order to
avoid being negative, the optimal range is defined from zero to
infinitely large.

3.3 Fitness Function. A fitness function is used to compute
the fitness of each chromosome and therefore plays a very impor-
tant role in PGA. Traditionally, the value of fitness function is a
positive value. A fitness value should represent how good a chro-
mosome is for the given problem. The strings with better fitness
value are more likely to be selected for reproduction in the fol-
lowing generation.

In order to find the optimal values of the parameters, the fitness
function is minimized in the form of a sum of the least-squared
errors between the experimental data and predicted pressure pul-
sations. As both of the pressure peaks and the time duration be-
tween them are concerned, the fitness function is constructed by
evaluating both the difference between the predicted and tested
pressure peaks and the difference between the predicted and tested
durations between the peaks. It can be described as

min � = k1��
t

��y�t� − y0�t��T�y�t� − y0�t���

+ k2�
i

�tpmax

�i� − t0pmax

�i� �, i = 2,3,4 �14�

where � is the fitness function, y�t� is the predicted pressure re-
sults, y0�t� is the experimental pressure data, t0pmax

is the time
duration between the tested pressure peaks, tpmax

is the time dura-
tion between the predicted pressure peaks, and k1 and k2 are
weighting factors.

3.4 Parallel Computing Using MATLAB. By using the Win-
dows OS and local network, the DCT and MATLAB distributed
computing engine �MDCE� are used to implement the simulta-
neous computation of the fitness functions on a cluster of comput-
ers by PGA. DCT and MDCE can facilitate the coordination and
execution of independent operations simultaneously on a cluster
of computers in order to speed up the execution of time consum-
ing jobs. All the originally complete large-scale jobs are broken
down into segments. The segments are also called tasks. The DCT
defines the job as the computation of the fitness function on a
cluster of computers. Each computer is a worker where the user’s
MATLAB program runs. The MDCE performs the job execution by
evaluating each of its tasks and returning the results to the client.
The job manager is the part of the engine that coordinates the
execution of jobs and the evaluation of their tasks. It distributes
the tasks for evaluation to all workers, as shown in Fig. 4.

The job manager can be run on any computer through the net-
work. It runs jobs in the order in which they are submitted, unless
a job in its queue is promoted, demoted, canceled, or destroyed. A
MDCE setup usually includes many workers that can execute all
tasks simultaneously. The MDCE Daemon makes it possible for
these processors to communicate with each other on different

computers. Each worker is given a task from the running job by
the job manager to execute the task and return the results to the
job manager. Thereafter, another task is given. The job manager
then returns the results of all the tasks in the job to a client session
�client session is a computer�. It is generally not important which
worker executes which specific task. After the fitness functions of
all individuals in a population are computed completely, the algo-
rithm program returns to serial GAs to execute.

4 PGA Implementation
PGAs can be implemented without changing the GA codes in

WINDOWS/MATLAB. Only the distributed computing environment
needs to be set up and a function has to be used to distribute all
the tasks across the worker computers.

4.1 Simulation Model. The prediction of pipeline transients
is carried out based on the MATLAB SIMULINK platform because it
can be easily linked with the predictions of other hydraulic com-
ponents, which are usually in a MATLAB SIMULINK environment as
well. In the SIMULINK program, the flow rate and pressure vari-
ables are created as vectors. As the finite difference method is
used for the simulation, the pipeline is divided into n elements
with equal length. The vectors of flow and pressure inside the
pipeline can be described as

q = �q1 q2 ¯ qn�T, p = �p1 p2 ¯ pn�T

The partial differential terms in the time domain � /�t in Eqs. �1�
and �2� can be easily calculated using a standard integral block in
SIMULINK. The partial differential terms in the spatial domain � /�x
in Eqs. �1� and �2� can be constructed by using the selector block
in SIMULINK. The selector block in MATLAB/SIMULINK is used to
select or reorder the specified elements from an input vector or
matrix.

For example, by using the selector block, the first n−1 elements
in the flowrate vector can be selected. If the boundary condition
�the flow rate at the valve side q0=0 after the sudden closure of
the valve� is specified and this together with the other n−1 ele-
ments forms a new flow rate vector q�= �q0 q1¯qn−1�T, dq /dx
can be described as

dq

dx
=

�q − q��
dx

=
�q1 q2 ¯ qn�T − �q0 q1 ¯ qn−1�T

dx

=

�
q1 − q0

q2 − q1

]

qn − qn−1



dx

=

�

q1


q2

]


qn



dx

�15�

From the pressure vector p= �p1 p2¯pn�T, the last n−1 ele-
ments are selected. The boundary condition �the pressure at the
reservoir side p0=1.0257
105 Pa� is taken as the last element
and this together with the other n−1 elements forms a new
n-dimensional pressure vector p�= �p2 . . . pnp0�T. So that dp /dx
can be described as

dp

dx
=

�p� − p�
dx

=
�p2 ¯ pn p0�T − �p1 p2 ¯ pn�T

dx

=

�
p2 − p1

p3 − p2

]

pn − pn−1

p0 − pn



dx

=

�

p1
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]
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dx

�16�

Fig. 4 Basic cluster computing configuration
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The SIMULINK block diagram for dq /dx and dp /dx can be de-
scribed by MATLAB/SIMULINK blocks, as introduced in Ref. �5�.

The whole simulation model, which is used to identify the ini-
tial gas bubble volume, gas releasing time constant and gas re-
solving time constant by PGA, can be described by a SIMULINK

block diagram. When the pressure and flow rate of each element
are decided, the gas bubble volumes Vgasb can be calculated using
Eqs. �8�–�11� and the cavitation volume can be calculated using
Eq. �7�. Similarly, the effective bulk modulus Beff can be calcu-
lated using Eq. �5� and the acoustic velocity C0 in oils can be
calculated from Eq. �3�.

4.2 Programming and Realization of the Algorithms. The
PGA is implemented based on the distributing parallel computing
environment. The parallel computing environment is based on a
local network with four PCs.

In order to guarantee the communication between computers,
the “cmd” command should be inputted and run in Windows OS
RUN. Then, in the directory of MATLAB, commands should run in
the MS-DOS system to install and setup parallel computing soft
environment MDCE on the job manager and worker computers.

The fitness function for pressure transient models defines the
variables in SIMULINK models and requires the calling of the mod-
els. Based on the least-square errors between predicted and ex-
perimental pressure peaks, as well as the difference of time dura-
tions, the fitness function is evaluated by calling the simulation
and experimental curves from SIMULINK models. In the parallel
computing, the “assignin” function should be used to define the
global variables and send the variable values to the SIMULINK

models to actualize the data share and transmission between
m-files and SIMULINK models when programming the fitness
function.

By using the MATLAB DCT, MATLAB GA, and directed search
toolbox, the PGAs for the pressure transient parameter identifica-
tions can be implemented. The “ga” function is selected to execute
genetic algorithms. The “FileDependencies” function of DCT is
used to copy the MATLAB files and SIMULINK models from the
client session to worker computers and then executes them on the
workers. The “distributionpopulation” function is used to distrib-
ute the population of points into a cell array. The “dfeval” func-
tion is applied to implement the simultaneous computation of the
fitness function on the worker computers. The “gaoptimset” func-
tion is selected to setup PGA parameters and the population size
�20 in this paper� of a generation. The number of generations is set
to be 50 in this paper. The selection method is “roulette elite” and
the number is 2. The crossover fraction is 0.8 and the migration
fraction is 0.2. The “tic” and “toc” functions are used to note the
overall executing time of the PGAs.

5 Optimized Results
Parameter identifications are carried out by using the experi-

mental data to select the reasonable parameter values in the simu-
lation models. The experimental data were obtained from the
pipeline test rig for pressure pulsations, as shown in Fig. 5. The
test rig consists of a pump driven by an electric motor, a on-off
valve, a reservoir, a relief valve, a throttle valve, the pipeline, two

pressure transducers, a temperature meter, and a flow rate meter.
The on-off valve is used to create the pressure pulsations inside
the pipeline. The reservoir at one end of the pipeline provides a
constant upstream pressure. The relief valve guards the safety of
the system. The throttle valve is used to heat the oil to a certain
temperature. Usually, it is fully opened. The rotating speed of the
electric motor can be adjusted, so that the flow rate of the pump is
variable. Two piezoelectric pressure transducers for the dynamic
pressure measurement were fitted on the pipe and used to directly
record the pressure pulsations with 0.1 ms sample time. The dy-
namic response of the piezoelectric transducer is 200 kHz. Some
construction parameters of the test rig, as well as the information
of hydraulic oils, are the same as the simulation parameters in
Table 1. All the other parameters are labeled in Fig. 5. After an
experiment is performed, a large number of gas bubbles may be
accumulated in the reservoir. Then, the initial gas volume for the
next experiment will be changed and the reproducibility of the
experiment will be influenced. In order to avoid the influence of a
previous experiment, enough long time should be waited until the
same experiment is repeated. Sometimes, overnight resting of the
test rig is necessary. Pressure pulsations measured by the first
pressure transducer in three repeat experiments are shown in Fig.
11 in Appendix C.

Hence, two sets �pt1 and pt2� of data from the same experiment
were obtained by the two transducers. One is used for the model
parameter identification by PGA. The other is used to validate the
accuracy of pressure transient models with optimized parameters.
Swapping the roles of the two transducers will not change the
results of the identification. In the procedure of PGA, experimen-
tal data were taken from the first pressure transducer close to the
valve. As the “Spline” function in MATLAB software is effective
for removing noise, it is used to denoise the experimental data in
the MATLAB program before the PGA runs.

For the optimization procedure, the PGA is set up on a popula-
tion of chromosomes made up of three genes, which are the pa-
rameters of initial gas bubble volume Vingas, gas releasing time
constant 	out, and gas resolving time constant 	in, respectively.
Figure 6 presents the average fitness value and the optimal fitness
value during the identification. It shows that the algorithm is well
convergent and the average fitness value achieves the best value.
The results of parameter identifications are reported in Table 3.
The initial gas volume Vingas �almost 0.05% V0� estimated from

Fig. 5 Test rig for pressure pulsation

Fig. 6 Fitness value with generation

Table 3 Results of parameter identifications

Parameters Value

Gas releasing time constant 	out, s 11.35
Gas resolving time constant 	in, s 23.61
Identified initial volume of gas bubbles Vingas, m3 4.019562E−009
Estimated initial volume of gas bubbles Vingas, m3 3.938442E−009
The volume of element V0, m3 7.876884E−006
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formulas �3�, �5�, and �11� is also shown in the table. It can be
seen that the identified gas releasing time constant 	out and the gas
resolving time constants 	in are close to the experimental values
for the heavy lubricating oil �11.7 s for evolution and 32.7 s for
solution� given in Ref. �18�. The table also shows that the identi-
fied initial gas volume nearly agrees with the estimated initial gas
volume.

The pressure pulsations predicted by using the mathematical
models with the identified parameters are shown in Fig. 7 and
compared with the experimental data from the first pressure trans-
ducer.

The comparison between the simulation and experimental re-
sults in Fig. 7 shows that the pressure transient model with iden-
tified parameters handles the simulation of pressure transients,
especially the first four peaks and the time duration between the
peaks, with a better accuracy compared with the models using
parameters in Table 2 given by Ref. �18�. See Fig. 3.

In order to verify the practicability of the model with identified
parameters, the other set of experimental data from the second
transducer is compared with the simulation results of the model
with the same identified parameters, as shown in Fig. 8.

Good agreement between the two curves is seen in Fig. 8. Com-
parison of the results in Figs. 7 and 8 demonstrates that optimiza-
tion using the PGA method presented in this paper is capable of
estimating unknown parameters in the pressure transient models
accompanied with cavitation and gas bubbles inside low pressure
hydraulic pipelines.

To prove the PGA performance, the PGA programs with differ-
ent numbers of workers and the serial GA programe are executed

to identify the unknown parameters in the pressure transient mod-
els. The executing times of different programs are shown in Table
4.

Table 4 shows that the executing time using GAs is about
204 h, which is about 9 days. By using PGA with three workers,
the executing time is shortened to be 20 h, which is about 0.8 day
only. The comparison of executing times indicates that the execut-
ing time of PGA with two or three workers is much shorter than
that of GAs. However, the computing time of PGA with one
worker is a little longer than that of GAs. This is probably because
of the communication time wasted by the PGA. The executing
time shows that the PGA with more than one worker can shorten
the parameter-identification time for pressure transient models ac-
companied with cavitation and gas bubbles significantly.

6 Conclusions
In order to predict the fluid transients accompanied with cavi-

tation and gas bubbles inside hydraulic pipelines, the parameter
identification for the transient process modeling is completed us-
ing PGAs. Based on the Windows OS and a local network, PGAs
are executed on a cluster of computers. By applying PGA, the
global optimal parameters for the gas releasing time constant and
the gas resolving time constant in the pipeline transient models are
identified. The comparison of executing time when PGA and GAs
are executed for the parameter identifications shows that PGA
with more than two workers can save computing time signifi-
cantly. The comparison of simulation and experimental pressure
data shows that PGA is able to identify efficiently, not only the
gas releasing and resolving time constants, but also other param-
eters necessary for the low pressure hydraulic pipeline transient
models.

However, it should be kept in mind that the proposed procedure
for parameter identification is sensitive to many things. The esti-
mation of the unknown parameters depends on the validity and
accuracy of the mathematical models and the applied numerical
methods, as well as the accuracy of the experiments. Further work
still needs to be done to see if the identified time constants are
universal for all kinds of hydraulic oils under all kinds of condi-
tions.
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Nomenclature
A � flow area of pipeline, m2

Beff � effective bulk modulus of gas and liquid mix-
ture, Pa

Bgas � bulk modulus of gas, Pa
Bliquid � bulk modulus of oil in the pipeline, Pa
Bpipe � bulk modulus of pipe wall, Pa

C0 � acoustic velocity inside the fluid, m/s
E � modulus of elasticity of pipe wall material, Pa

F0 � steady state friction term, N
F�q� � friction term, N

g � acceleration because of gravity, m /s2

h � thickness of pipe wall, m
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Fig. 7 Comparison of simulation and experimental pressure
pulsations from the first transducer
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Fig. 8 Comparison of simulation and experimental pressure
pulsations from the second transducer

Table 4 Executing time of PGA and GAs

Algorithms No. of computers No. of workers Executing time te, h

GAs 1 0 204
PGA 2 1 207
PGA 3 2 39
PGA 4 3 20
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n � number of elements
p � pressure of an element, Pa

pe � saturation pressure �atmospheric pressure� of
hydraulic oil, Pa

pvapor � vapor pressure of hydraulic oil, Pa
q � flow rate of an element, m3 /s

qin � flow rate coming into each element, m3 /s
qout � flow rate going out of each element, m3 /s

r0 � inner pipeline radius, m
r1 � outer pipeline radius, m
S � solubility constant of hydraulic oil
t � time variable, s

V0 � volume of each element, m3

Vgas � volume of gas bubbles and cavitation during
fluid transients, m3

Vliquid � volume of liquid, m3

Vcav � volume of cavitation, m3

Vgasb � volume of gas bubbles, m3

Vingas � initial gas volume, m3

Vpipe � volume of pipe interior, m3

x � spatial variable, m
� � gas content ratio
� � kinetic viscosity of fluid, m2 /s
� � density of gas and oil mixture, kg /m3

�liquid � density of oil, kg /m3

�gas � density of gas, kg /m3

�0 � inclination of pipe, rad
ve � volume of gas resolved in oil at initial state,

m3

v � transient volume of gas resolved in oil before
equilibrium is achieved, m3

v� � volume of gas resolved at pressure p when
equilibrium is achieved, m3

	 � gas releasing time constant or gas resolving
time constant, s

	out � gas releasing time constant, s
	in � gas resolving time constant, s

p � pressure rise after valve closure

q � initial flow rate of pipeline

Appendix A: Derivation of Equation (4)
Initially, the total volume of an element V0 can be written as

V0 = Vliquid + Vgas �A1�

where Vliquid and Vgas are initial volumes of the liquid and gas,
respectively, and V0=Vpipe. As shown in Fig. 9, when there is a
pressure increase 
p in the pipeline, there will be a decrease in
the initial volume of


V0 = − 
Vgas − 
Vliquid + 
Vpipe �A2�
where the subscripts gas, liquid, and pipe refer to the gas, liquid,
and pipe wall, respectively. The effective or total bulk modulus
Beff can be defined by

1

Beff
=


V0

V0
p
�A3�

Combining Eqs. �A1� and �A2� yields

1

Beff
=

Vgas

V0
�−


Vgas

Vgas
p
� +

Vliquid

V0
�−


Vliquid

Vliquid
p
� + �
Vpipe

V0
p
�
�A4�

The bulk modulus of a liquid can be expressed as

Bliquid = −
Vliquid
p


Vliquid
�A5�

The bulk modulus of a gas may be defined by

Bgas = −
Vgas
p


Vgas
�A6�

The quantity

Bpipe =
V0
p


Vpipe
�A7�

may be defined as the bulk modulus of the pipe wall with respect
to the total volume. Substituting �A5�–�A7� into �A4� gives the
final result. Therefore,

1

Beff
=

Vgas

V0
� 1

Bgas
� +

Vliquid

V0
� 1

Bliquid
� +

1

Bpipe
�A8�

This is a general equation, which gives the equivalent bulk modu-
lus for a liquid-gas mixture in a flexible pipeline. Solving Eq.
�A1� for V0 and substituting Vliquid=V0−Vgas into Eq. �A8� give

1

Beff
=

1

Bpipe
+

1

Bliquid
+

Vgas

V0
� 1

Bgas
−

1

Bliquid
� �A9�

For a thin-walled metal pipeline, such that r0�r1, the bulk modu-
lus of pipe wall can be approximated to

Bpipe =
hE

2r0
�A10�

Fig. 9 Pipeline filled with gas-liquid mixture: „a… initial situation and „b… under compression

Journal of Applied Mechanics JULY 2008, Vol. 75 / 041012-7

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Appendix B: Predicted Pressure Pulsations When the
Element Number is 20, 40, and 80

Please see Fig. 10 for tested pressure pulsations.

Appendix C: Tested Pressure Pulsations in Three Re-
peated Experiments

Please see Fig. 11 for predicted pressure pulsations.
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Elastic Stress and Magnetic Field
Concentration Near the Vertex of
a Soft-Ferromagnetic 2D
Compound Wedge
The problem of elastic stress and magnetic field concentration near the vertex of a
compound wedge is modeled and investigated. The wedge is made of two isotropic di-
electric soft-ferromagnetic materials and is immersed in a static magnetic field. The
technique of eigenfunction series expansion is applied on the components of the elastic
displacement field and the induced magnetic potentials near the vertex. It is shown that in
this region, the magnetic susceptibility and the applied magnetic field have a strong
influence on the elastic stress and magnetic field concentration. The results are instru-
mental toward actively controlling the stress concentration intensity via the applied mag-
netic field. �DOI: 10.1115/1.2912937�

1 Introduction
The recent years have witnessed the development of a new

concept, namely, that of multifunctional materials/structures �see,
e.g., Refs. �1� and �2��. A great deal of research activity associated
with this concept have been conducted. It is especially targeted to
provide broader capabilities to the next generation of aeronautical/
aerospace vehicles and spacecraft. One underlying idea of this
concept is to exploit multiphysical and/or multiscale properties of
materials or structures in such a way that besides its major desig-
nated functionality, the same structural component should accom-
plish at least one more function. One example of such a design is
a load carrying smart structure that can conduct nondestructive
crack diagnosis or health monitoring by itself. This can lead to
truly integrated structures, being able to perform multiple struc-
tural, as well as electromagnetic and electromechanical functions.
To implement this concept in various contexts, e.g., in aerospace
vehicles and nuclear reactor constructions, a better understanding
of static and dynamic behaviors of the deformable structures sub-
jected to simultaneous action of multiphysical fields becomes im-
perative. These physical fields may consist of mechanical, ther-
mal, electrical, and magnetic ones.

One critically important area, which needs such an improve-
ment in understanding, is the stress concentration behavior of
elastic compound wedges subject to multiphysical fields. We note
here that with the absence of physical field�s�, the stress concen-
tration in the vicinity of an elastic wedge’s vertex has been exten-
sively investigated. For example, in an early paper by Williams
�3�, the stress singularities in angular corners of plates subjected
to extension in their own plane were investigated, and in Ref. �4�,
Dempsey and Sinclair investigated the concentration behavior at
the vertex of a bi-material wedge, while in a recent paper �5� by
Lin and Sung, the stress concentration intensity at the verticies of
compound wedges composed of orthotropic materials was exam-
ined. With the presence of thermal field, Hwu and Lee �6� showed

that the stress concentration intensities are influenced by the heat
conduction coefficients. Under the influence of electric field,
Fil’shtinskii and Matvienko �7� examined the singularities of the
coupled electroelastic fields near the vertex of a piezoceramic
wedge. In the present paper, a wedge made of magnetosoft ferro-
magnetic materials and immersed in a stationary magnetic field is
considered. The governing equations and surface conditions are
obtained by using the theory of magnetosoft ferromagnetic media
�see, e.g., Ref. �8��. Solutions are constructed for the formulated
boundary problem. All the components of the magnetoelastic
stress and the perturbed magnetic field near the vertex are ana-
lyzed via the use of eigenfunction series expansions, which leads
to a set of ordinary differential equations. The unknown coeffi-
cients associated with singularities depend on the boundary and
continuity conditions, and the characteristics of stresses and the
magnetic disturbance near the vertex can be predicted by locating
the critical fixed point of a highly nonlinear equation.

As will be demonstrated in the sequel of this paper, accounting
for the magnetic susceptibility �or permeability� and incorporating
the external magnetic field can completely change the overall
characteristics of the state of stresses in the vicinity of the vertex
of a soft-ferromagnetic wedge. This fact makes it possible to con-
trol the stress concentration near the vertex of compound wedges
by applying an external magnetic field.

2 Modeling of the Problem
Consider the plane-strain problem of an inhomogeneous com-

pound wedge made of two isotropic dielectric magnetosoft ferro-
magnetic materials, which are perfectly bonded together, with
each constituent body featuring different magnetoelastic proper-
ties. The materials are assumed elastically deformable and only
the long-range magnetic forces defined by Pao and Yeh �8� are
considered. As a result, magnetostriction through constitutive
equations is omitted �see also Ref. �9��.

In order to investigate the state of stresses and the magnetic
field near the vertex of the wedge �denoted as P, see Fig. 1�, a
cylindrical coordinate system �z ,r ,�� is adopted so that the origin
of the polar coordinate system �r ,�� is located at point P. The
angle � is measured counterclockwise from the bonding line and
the wedge is immersed in an external stationary magnetic field,
while the medium surrounding the wedge is assumed to be
vacuum. In a general case, the external magnetic field H0

�e�

=H�e�+Hrer is produced by such magnetic sources as electrical
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current or other magnetized materials, with the magnetic field
components H� and Hr being given. Since we focus our investi-
gation area in the vicinity of the wedge’s vertex, we assume that
Hr=0. As a result, H0

�e�=H�
�e�e�, with H�

�e� being positive in the
direction of e� �see Fig. 1�.

Apart from the undisturbed equilibrium configuration reached
by the wedge under the influence of the external magnetic field,
we denote by ur

�i�, u�
�i� �i=1,2� the components of the disturbed

displacement vector U�i� near the vertex P of the wedge in direc-
tions r and �, while ��i� is the disturbed magnetic potential in-
duced within the wedge. For the problem being considered herein,
the stresses within the ith constituent body can be represented as

���
�i� = 2G�i� �1 − ��i�����

�i� + ��i��rr
�i�

1 − 2��i� , �rr
�i� = 2G�i� �1 − ��i���rr

�i� + ��i����
�i�

1 − 2��i�

�1a�

�r�
�i� = 2G�i��r�

�i�, �zz
�i� =

2G�i�

1 − 2��i� ��rr
�i� + ���

�i�� �1b�

in which the superscript �i� denotes the quantities associated with
the ith constituent body, G�i� and ��i� are the shear modulus and
Poisson’s ratio, respectively; ���, �rr, �r�, and �zz are the elastic
stress components in plane strain state, while ���, �rr, and �r� are
the strain components.

In terms of the displacement components ur
�i� and u�

�i�, the strain
components in Eqs. �1a� and �1b� can be expressed as

���
�i� =

1

r

�u�
�i�

��
+

ur
�i�

r
, �rr

�i� =
�ur

�i�

�r
�2a�

2�r�
�i� =

1

r

�ur
�i�

��
−

u�
�i�

r
+

�u�
�i�

�r
�2b�

Denote the domain occupied by the ith constituent body by �i
�i=1,2�, then based on the equations of magnetoelasticity of di-
electric magnetosoft ferromagnetic media, see Refs. �8,9� one ob-
tains the following system of equations:

Equations in �i:

��2ur
�i� −

ur
�i�

r2 −
2

r2

�u�
�i�

��
� + ki

�

�r
� �ur

�i�

�r
+

ur
�i�

r
+

1

r

�u�
�i�

��
�

+ ��i�H�
�i��1

r

�2��i�

�r��
−

1

r2

�2��i�

��2 � = 0 �3a�

��2u�
�i� −

u�

r2 +
2

r2

�ur
�i�

��
� + ki

1

r

�

��
� �ur

�i�

�r
+

ur
�i�

r
+

1

r

�u�
�i�

��
�

+ ��i�H�
�i�� 1

r2

�2��i�

��2 +
1

r

���i�

�r
� = 0 �3b�

�2��i� = 0 �3c�

where �2��2 /�r2+1 /r ·� /�r+1 /r2 ·�2 /��2 is the 2D Laplace op-
erator in the polar coordinate system; ki�1 / �1−2��i��; ��i�

�2�0	�i� /G�i�, in which, 	�i� is the magnetic susceptibility; while
H�

�i� denotes the circumferential component of the static magnetic
field. The underlined terms in Eqs. �3a� and �3b� are associated
with the linearized radial and circumferential components of the
body force due to magnetization, respectively �10�,

f�i� = �0	�i��H0
�i� · �� � ��i� �4�

in which �0 is the magnetic permeability of vacuum.
The induced magnetic field outside the wedge is governed by

the equation

�2��e� = 0 �5�

in which ��e� is the disturbed magnetic potential induced outside
of the wedge. In the sequel, the superscript �e� denotes the quan-
tities associated with the vacuum.

The boundary conditions on the surfaces �=�1 and �=�2 can be
expressed as

tr�
�i� + tr�

m�i� = tr�
m�e� �6a�

t��
�i� + t��

m�i� = t��
m�e� �6b�

��i� − ��e� +
	�i�

�r
�i�H�

�e�u�
�i� = 0 �6c�

�r
�i����i�

��
−

���e�

��
= 0 �6d�

where tr�
�i� and t��

�i� are the components of the elastic stress; tr�
m�i�,

t��
m�i�, tr�

m�e�, and t��
m�e� are the components of the Maxwell stress

tensor within the wedge and the vacuum, respectively; while �r
�i�

is the relative permeability. It is noted that the conditions �6a� and
�6b� state the fact that the surfaces �=�1 and �=�2 are free of total
stresses, i.e., of those resulting from the superposition of the me-
chanical and the magnetic stresses; while Eqs. �6c� and �6d� define
the jump conditions of the induced magnetic fields ��i� and ��e�.
Worthy of further noting is that condition �6c� is based on the
conservation of circulation of the induced magnetic field enclos-
ing the wedge, which is physically justified by the fact that the
wedge is dielectric and no electric charge is generated on the
wedge.

The continuity conditions of the displacements and stresses on
the interface �=0 can be expressed as

U�1� = U�2� �7a�

tr�
�1� + tr�

m�1� = tr�
�2� + tr�

m�2� �7b�

t��
�1� + t��

m�1� = t��
�2� + t��

m�2� �7c�

��1� − ��2� + � 	�1�

�r
�1� −

	�2�

�r
�2��H�

�e�u�
�1� = 0 �7d�

�r
�1����1�

��
− �r

�2����2�

��
= 0 �7e�

By superposing the stress components tr�
�i�, t��

�i�, tr�
m�i�, t��

m�i�, tr�
m�e�,

and t��
m�e� on the undisturbed elastic and Maxwell stresses, the

wedge reaches a new equilibrium state. These quantities due to the
disturbance can be represented as follows:

tr�
�i� = �r�

�i� + �0	�i�H�
�i�hr

�i� �8a�

t��
�i� = ���

�i� + 2�0	�i�H�
�i�h�

�i� �8b�
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Fig. 1 Geometry „left… and the coordinates „right… of a com-
pound wedge. In the left, H0

„1… and H0
„2… denote the static mag-

netic fields in Materials „1… and „2…, respectively.
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tr�
m�i� = �0�r

�i�H�
�i�hr

�i� �8c�

t��
m�i� = �0�2�r

�i� − 1�H�
�i�h�

�i� �8d�

tr�
m�e� = �0H�

�e�hr
�e� �8e�

t��
m�e� = �0H�

�e�h�
�e� �8f�

h�i� � ���i� �8g�

h�e� � ���e� �8h�

In Eqs. �8a� and �8b�, �r�
�i� and ���

�i� are defined by Eqs. �1a� and
�1b�.

It is further noted that the continuity conditions on the surfaces
�=�1 and �=�2 require that

H�
�i� =

1

�r
�i�H�

�e� �9�

3 Solution of the Problem
The displacement field and magnetic potential in each of the

constituent body �i �i=1,2�, as well as the magnetic potential in
the external domain are found by assuming the following repre-
sentation �see Refs. �11–13��:

�ur
�i�,u�

�i�,��i�,��e�� = r
�ūr
�i����, ū�

�i����,H�
�e��̄�i����,H�

�e��̄�e�����
�10�

where ūr
�i����, ū�

�i����, �̄�i����, and �̄�e���� are unknown functions;
and 
 is a parameter which quantifies the concentration intensity
in the vicinity of the wedge vertex and will be determined later.

Substituting expressions in Eq. �10� into Eqs. �3a�–�3c�, �4�,
and �5�, a set of ordinary differential equations is obtained. Fol-
lowing the solution steps of eigenfunction expansion technique,
the following solution form of ūr

�i����, ū�
�i����, �̄�i����, and �̄�e����

is adopted:

�ūr
�i����, ū�

�i����,�̄�i����,�̄�e����� = exp�����ũr
�i�, ũ�

�i�,�̃�i�,�̃�e��
�11�

in which the quantities overheaded by tilde are parameters inde-
pendent of r and �.

The eigenvalues associated with �̄�i� and �̄�e� are �j
, with j
being defined as �−1, while the eigenvalues associated with the
other basic unknowns are �j�
+1�, �j�
−1�. As a result, the
solutions of �̄�i� and �̄�e� can be represented as

�̄�i���� = Ei sin�
�� + Fi cos�
�� �12a�

�̄�e���� = Ee sin�
�� + Fe cos�
�� �12b�

where the coefficients Ei, Fi, Ee, and Fe are unknown constants,
which are to be determined by imposing the boundary and conti-
nuity conditions �6a�–�6d� and �7a�–�7e�.

Corresponding to the eigenvalues �= � j
, part of the solution
of ūr

�i� and ūr
�i� due to the presence of �̄�i� written in the form of Eq.

�12a� is

ūr1
�i���� = − 
iEi cos�
�� + 
iFi sin�
�� �13a�

ū�1
�i���� = 
1iEi sin�
�� + 
1iFi sin�
�� �13b�

where the coefficients 
i and 
1i are defined as


i � −
2�0	�i��H�

�e��2

G�i�

�
 − 1��ki
 + 2
 + 1�

�ki + 1��1 − 4
2�
�14a�


1i � −
2�0	�i��H�

�e��2

G�i�

�
 − 1��ki
 + 2
 + ki + 1�

�ki + 1��1 − 4
2�
�14b�

Similarly, corresponding to the eigenvalues �= � j�
+1� and
�= � j�
−1�, the solutions of ūr

�i� can be written in the form

ūr2
�i���� = Ai sin��
 − 1��� + Bi cos��
 − 1��� + Ci sin��
 + 1���

+ Di cos��
 + 1��� �15�

in which the coefficients Ai, Bi, Ci, and Di have to be determined
by the boundary and continuity conditions �6a�–�6d� and �7a�–
�7e�. The corresponding solution form of ū�

�i� is obtained as

ū�2
�i���� = 
2iAi cos��
 − 1��� − 
2iBi sin��
 − 1���

+ Ci cos��
 + 1��� − Di sin��
 + 1��� �16�

in which


2i �
ki
 + ki + 2

ki
 − ki − 2
�17�

In summary, the total solutions of ūr
�i� and ū�

�i� can be in repre-
sented in the following form:

ūr
�i���� = Ai sin��
 − 1��� + Bi cos��
 − 1��� + Ci sin��
 + 1���

+ Di cos��
 + 1��� − 
iEi cos�
�� + 
iFi sin�
�� �18a�

ū�
�i���� = 
2iAi cos��
 − 1��� − 
2iBi sin��
 − 1���

+ Ci cos��
 + 1��� − Di sin��
 + 1���

+ 
1iEi sin�
�� + 
1iFi cos�
�� �18b�
Substituting Eqs. �18a�, �18b�, �12a�, and �12b� into the bound-

ary and continuity conditions �6a�–�6d� and �7a�–�7e�, the follow-
ing homogeneous system of linear algebraic equations with re-
spect to the unknown constants Ai, Bi, Ci, Di, Ei, Fi, Ee, and Fe is
obtained:

�Z11 Z12

Z21 Z22
�

Z

14�14� Y�el�

Y�mg� �
14�1

= 0

�19�

in which the entries of the submatrices Zij ��i , j�=1,2� are defined
in the Appendix, while the vectors Y�el� and Y�mg� are defined as

Y�el� � �A1,B1,C1,D1,A2,B2,C2,D2�T �20a�

Y�mg� � �Es1,Fs1,Es2,Fs2,Ee,Fe�T �20b�
It is noted that in Eq. �20b�, due to the wide variation of per-

meability of soft-ferromagnetic materials �see, e.g., Refs. �14,15��,
for the purpose of rescaling, Esi and Fsi are used to replace �	�i�

+1�Ei and �	�i�+1�Fi, respectively.
The condition of existence of nontrivial solution of this alge-

braic system �19�, i.e., det�Z�=0, determines the unknown param-
eter 
, which leads to the following transcendental equation:

F�
,B̂0
2,�1,�2,�r

�1�,�r
�2�,G�1�/G�2�,��1�,��2�� = 0 �21�

where the nondimensional magnetic field intensity parameter B̂0

�H�
�e���0 /G�2�, F is an operator whose expression is very com-

plicated and lengthy and is omitted here.
As a special case, in the absence of the external magnetic field,

i.e., B̂0=0, the submatrix Z12 in Eq. �19� reduces to zero. As a
result, Eq. �21� splits into two independent transcendental equa-
tions

det�Z11� = 0 �22a�

or

det�Z22� = 0 �22b�

While Eq. �22a� has been obtained by Chobanyan �12� to in-
vestigate the characteristics of elastic stress near the vertex of a
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compound body, Eq. �22b� has been obtained by Mittra and Li
�13� to study the behavior of the magnetic field on the top of a
piecewise homogeneous ferromagnetic wedge. From Eqs. �10�,
�1�, and �8a�–�8h�, it is readily seen that all components of the
elastic stress and disturbed magnetic fields near the vertex of the
wedge take the following form:

r
R−1R�
I,r,�� �23�

where 
R�Re�
�, 
I� Im�
�, and R�r ,� ,
I� is bounded in am-
plitude and in general does not vanish when r→0.

From Eq. �23�, it can be seen that the characteristics of the state
of elastic stress and disturbed magnetic fields near the vertex of
the wedge are determined by 
R. If 
R�1, we have a no-
concentration state. If 
R�1, then the elastic stress and disturbed
magnetic fields increase without bound at the vertex, implying
that strong concentration occurs. It is recalled that due to the
finiteness of the induced strain energy and of the induced mag-
netic potentials, see, e.g., Refs. �12,13�, 
R�0. Consequently, we
will consider in the sequel the solutions of 
R� �0,1�.

4 Numerical Issues, Results, and Discussion
Equation �21� is highly nonlinear with respect to 
 and the

operation of direct differentiation of the function F�¯� in the left
side with respect to 
 is by no means a trivial task. To locally
search for a solution of 
 of Eq. �21�, the secant method, which
circumvents the direct differentiation, is employed. The details of
the numerical procedure can be found in, e.g., Ref. �16�. In order
to search for other nontrivial solutions of 
 of Eq. �21�, the plot of
contours, functionality of which is provided by
MATHEMATICA® �17�, of the expression of the left side is em-
ployed. Figure 2 shows the zero-value contour plot of the function
F�¯� in the range 
R� �0,1�, 
I� �0,1�. The associated param-
eters are given in the figure caption.

Depending on the mechanical and magnetic properties, as well
as on the geometry of the wedge, the presence of the applied
magnetic field can have a significant influence on the eigenvalues
of 
. In Table 1, two wedges with different geometries are inves-
tigated and in both cases, although the increase of the amplitude

of the magnetic field B̂0 has a negligible influence on the eigen-

value of 
, which is initially �in the sense that B̂0=0� a measure of
the intensity of the elastic stress concentration, it dramatically
changes the eigenvalue of 
 associated with the most severe sin-
gularity �denoted by 
ms�. In another two cases as shown in Table
2, besides the significant increase of the eigenvalue of 
ms, the

increase of B̂0 also significantly increases the eigenvalue of 
,
which initially measures the intensity of the elastic stress concen-
tration.

Table 1 Dependence of the eigenvalues � upon B̂0 in the case
that �„1…=0.32, �„2…=0.28, �r

„1…=104, and G„1… /G„2…=16

B̂0
2

�1=5� /6, �2=−� /6 �1=17� /24, �2=−7� /24


a 
ms
b of the wedge 
a 
ms

b of the wedge

0 0.614 0.614 0.746 0.746
0.001 0.614 0.148 0.747 0.117
0.002 0.614 0.212 0.747 0.165
0.004 0.614 0.348 0.746 0.238
0.006 0.614 0.397−0.106j 0.746 0.302
0.008 0.613 0.415+0.146j 0.745 0.354
0.010 0.613 0.402 0.744 0.367

aEigenvalue initially �in the sense that B̂0=0� measures the elastic stress concentra-
tion.
b
ms denotes the eigenvalue having the smallest real part 
R, which, by Eq. �23�,
characterizes the most severe singularity.

0.2 0.4 0.6 0.8 1
α R

0

0.2

0.4

0.6

0.8

1

I

Fig. 2 Zero-value contour plot of the function F„¯… in Eq. „21… in the range „�R« „0,1‡, �I

« †0,1‡…. „�„1… ,�„2…
…= „0.32,0.28…, „�„1… ,�„2…

…= „10,104
…, G„1… /G„2…=16, „�1 ,�2…= „7� /12,−5� /12…, B̂0

=0.1. The solid line is the solution of �, which fulfills Re†F‡=0; while the dotted line is the solution
of �, which fulfills Im†F‡=0. The final solutions of � are the crossed points of these two types of
lines.
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Table 3 traces the changes of all eigenvalues initially in the
range 
R� �0,1�. It is remarkable to note that in this case the
following are observed.

�a� Initially, there are three roots of 
 in the range 
R
� �0,1�. However, with the presence of the applied mag-
netic field, an additional eigenvalue appears �shown in
the second column�, which also characterizes the most
severe singularity:

�b� To some eigenvalues, e.g., in Columns 2 and 5, the in-

crease of the magnetic field B̂0 brings in an increase of

R of these eigenvalues; while to some other eigenvalue,

e.g., in Column 4, the increase of the magnetic field B̂0
brings in a decrease of 
R.

�c� Some eigenvalues, which initially involve the singularity
of the wedge, can be transformed to nonsingular type by
the applied magnetic field, as shown in Column 5. This
implies that the applied magnetic field may be benefi-
cially explored to actively remove stress concentration.

Table 4 shows the significant influence of the magnetic suscep-
tibilities of the compound wedge on the eigenvalues of 
 initially
in the range 
R� �0,1�. The elastic properties of the two constitu-
ent materials are the same. In this case, the eigenvalues, which
initially measure the intensity of the elastic stress concentration,
are dramatically changed by the magnetic susceptibilities.

5 Conclusions
The elastic stress and magnetic field concentration of soft-

ferromagnetic 2D compound wedges immersed in a static mag-
netic field are investigated. The major conclusions are as follows.

• The presence of the applied magnetic field can effectively
change the eigenvalues of 
; it can even bring in new ei-
genvalue�s�. These eigenvalues quantify the concentration

intensity in the vicinity of the wedge vertex. As a result, the
presence of the applied magnetic field can dramatically
change the concentration behavior near the wedge vertex.

• The magnetic susceptibility also has a strong influence on
the eigenvalues of 
.

Appendix: Definitions of Matrix Entries in Equation
(19)

Z11 � 	
0 1 0 1 0 − 1 0 − 1

Z21
�1� 0 1 0 Z21

�2� 0 − 1 0

Z31
�1� 0 1 0 Z31

�2� 0 Z33
�2� 0

0 Z42
�1� 0 1 0 Z42

�2� 0 Z44
�2�

W11
�1� W12

�1� W13
�1� W14

�1� 0 0 0 0

W21
�1� W22

�1� W23
�1� W24

�1� 0 0 0 0

0 0 0 0 W11
�2� W12

�2� W13
�2� W14

�2�

0 0 0 0 W21
�2� W22

�2� W23
�2� W24

�2�



8�8

Z12 � 	
Z15

�1� 0 Z15
�2� 0 0 0

0 Z26
�1� 0 Z26

�2� 0 0

0 Z36
�1� 0 Z36

�2� 0 0

Z45
�1� 0 Z45

�2� 0 0 0

W15
�1� W16

�1� 0 0 W1E
�1� W1F

�1�

W25
�1� W26

�1� 0 0 W2E
�1� W2F

�1�

0 0 W15
�2� W16

�2� W1E
�2� W1F

�2�

0 0 W25
�2� W26

�2� W2E
�2� W2F

�2�



8�6

Z21 = 	
0 0 0 0 0 0 0 0

Z61
�1� 0 Z63

�1� 0 0 0 0 0

W31
�1� W32

�1� W33
�1� W34

�1� 0 0 0 0

0 0 0 0 W31
�2� W32

�2� W33
�2� W34

�2�

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0



6�8

Table 2 Dependence of the eigenvalues � upon B̂0 in the case
that �„1…=0.32, �„2…=0.28, �r

„1…=10, �r
„2…=104, and G„1… /G„2…=16

B̂0
2

�1=5� /8, �2=−3� /8 �1=� /2, �2=−� /2


a 
ms
b of the wedge 
a 
ms

b of the wedge

0 0.784 0.784 0.762 0.762
0.001 0.802 0.093 0.774 0.066
0.002 0.815 0.131 0.786 0.092
0.004 0.831 0.183 0.809 0.127
0.006 0.838 0.223 0.831 0.153
0.008 0.843 0.254 0.851 0.172
0.010 0.845 0.277 0.870 0.188

aEigenvalue initially �in the sense that B̂0=0� measures the elastic stress concentra-
tion.
b
ms denotes the eigenvalue having the smallest real part 
R, which, by Eq. �23�,
characterizes the most severe singularity.

Table 3 Roots of � within the range �RÏ1 versus the change
of the applied magnetic field amplitude. �„1…=0.32, �„2…=0.28,
�r

„1…=10, �r
„2…=104, G„1… /G„2…=16, �1=3� /4, and �2=−� /4.

B̂0
2 Roots of 
 in the range 
R� �0,1�

0 ... 0.694 0.92 0.966
0.001 0.128 0.695 0.869 0.983+0.107j
0.002 0.183 0.695 0.855 0.990+0.165j
0.004 0.270 0.696 0.839 0.990+0.162j
0.006 0.377 0.696 0.829 0.994+0.182j
0.008 0.400 0.695 0.822 0.997+0.197j
0.01 0.398 0.694 0.815 1.001+0.209j

Table 4 Influence of the magnetic susceptibilities „�„1…, �„2…
… on

the eigenvalues � in the case that �„1…=0.3, �„2…=0.3, G„1… /G„2…

=1, �1=5� /6, and �1=−� /6

B̂0

	�1�=105, 	�2�=103 	�1�=1, 	�2�=105


a 
ms
b of the wedge 
a 
ms

b of the wedge

0 1.0 1.0 0.777+0.114j 0.777+0.114j
0.02 1.0 0.026 0.777+0.114j 0.020
0.04 1.0 0.051 0.778+0.113j 0.040
0.06 1.0 0.076 0.778+0.111j 0.060
0.08 1.0 0.100 0.778+0.109j 0.079
0.1 1.0 0.125 0.779+0.106j 0.099

aEigenvalue initially �in the sense that B̂0=0� measures the elastic stress concentra-
tion.
b
ms denotes the eigenvalue having the smallest real part 
R, which, by Eq. �23�,
characterizes the most severe singularity.
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Z22 � 	
1 0 − 1 0 0 0

0 Z66
�1� 0 − 1 0 0

W35
�1� W36

�1� 0 0 W3E
�1� W3F

�1�

0 0 W35
�2� W36

�2� W3E
�2� W3F

�2�

W45
�1� W46

�1� 0 0 W4E
�1� W4F

�1�

0 0 W45
�2� W46

�2� W4E
�2� W4F

�2�



6�6

In these matrices,

Z15
�i� � �− 1�i+1GriB̂0

2R7
�i�

where

Gri �
G�i�

G�2�

and

R7
�i� �

2	�i�

	�i� + 1


�
 − 1��ki
 + 2
 + 1�
�ki + 1��1 − 4
2�

Z21
�i� � �− 1�i+1R5

�i�, Z26
�i� � �− 1�iGriB̂0

2R8
�i�

where

R5
�i� �

ki
 + ki + 2

ki
 − ki − 2

and

R8
�i� �

2	�i�

	�i� + 1


�
 − 1��ki
 + 2
 + ki + 1�
�ki + 1��1 − 4
2�

Z31
�i� � R1

�i�, Z36
�1� � Gr1B̂0

2R2
�1�, Z31

�2� � − Gr1R1
�2�

Z33
�2� � − Gr1 Z36

�2� � − Gr1B̂0
2R2

�2�

where

R1
�i� �

kt�
 − 1�
ki
 − ki − 2

and

R2
�i� �

	�i� + 1/2
�	�i� + 1�2 −

	�i�

	�i� + 1

�
 − 1��2
2�ki + 2� − �ki + 1��
�ki + 1��1 − 4
2�

Z42
�i� � R3

�1�, Z45
�1� � Gr1B̂0

2R4
�1�, Z42

�2� � − Gr1R3
�2�

Z44
�2� � − Gr1 Z45

�2� � − Gr1B̂0
2R4

�2�

where

R3
�i� �

ki�
 + 1�
ki
 − ki − 2

and

R4
�i� �

	�i�

	�i� + 1

�
 − 1���ki + 1�2 + �4 + ki + ki
2�
2�

�ki + 1��1 − 4
2�
−

4	�i� + 1

2�	�i� + 1�2

Z61
�1� � �1 −

�r
�2�

�r
�1��R5

�1�, Z63
�1� � �1 −

�r
�2�

�r
�1��

Z66
�1� �

�r
�2�

�r
�1��1 − � 1

�r
�2� −

1

�r
�1��

�Gr1B̂0
22	�1�
�
 − 1��k1
 + 2
 + k1 + 1�

�k1 + 1��1 − 4
2� �
W11

�i� � R1
�i� cos��
 − 1��i�, W12

�i� � − R1
�i� sin��
 − 1��i�

W13
�i� � cos��
 + 1��i�, W14

�i� � − sin��
 + 1��i�

W15
�i� � GriB̂0

2�R2
�i� sin�
�i��, W16

�i� � GriB̂0
2�R2

�i� cos�
�i��

W1E
�i� � − 1

2GriB̂0
2 sin�
�i�, W1F

�i� � − 1
2GriB̂0

2 cos�
�i�

W21
�i� � R3

�i� sin��
 − 1��i�, W22
�i� � R3

�i� cos��
 − 1��i�

W23
�i� � sin��
 + 1��i�, W24

�i� � cos��
 + 1��i�

W25
�i� � GriB̂0

2�R4
�i� cos�
�i��, W26

�i� � − GriB̂0
2�R4

�i� sin�
�i��

W2E
�i� � 1

2GriB̂0
2 cos�
�i�, W2F

�i� � − 1
2GriB̂0

2 sin�
�i�

W31
�i� �

	�i�

	�i� + 1
R5

�i� cos��
 − 1��i�

W32
�i� � −

	�i�

	�i� + 1
R5

�i� sin��
 − 1��i�

W33
�i� �

	�i�

	�i� + 1
cos��
 − 1��i�, W34

�i� � −
	�i�

	�i� + 1
sin��
 − 1��i�

W35
�i� � R6

�i� sin�
�i�, W36
�i� � R6

�i� cos�
�i�

W3E
�i� � − sin�
�i�, W1F

�i� � − cos�
�i�

in which R6
�i� is defined by

R6
�i� �

1

	�i� + 1
− 2� 	�i�

	�i� + 1
�2
�
 − 1��ki
 + 2
 + ki + 1�

�ki + 1��1 − 4
2�
GriB̂0

2

W45
�i� � cos�
�i�, W46

�i� � − sin�
�i�

W4E
�i� � − cos�
�i�, W4F

�i� � sin�
�i�
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Design for manufacturing of equipment (that handles deformable objects) and disposable
medical devices (such as medical needles, optic fibers, and catheters for inserting into the
human body) involves solving mechanical contact problems. Unlike rigid component
manufacturing, which has been relatively well established, the handling of deformable
bodies remains a challenging research. This paper offers an adaptive meshless method
(MLM) for solving mechanical contact problems, which automatically insert additional
nodes into large error regions identified in terms of mechanical stresses. This adaptive
MLM employs a sliding line algorithm with penalty method to handle contact constraints.
The method does not rely on small displacement assumptions; thus, it can solve nonlinear
contact problems with large deformation. We validate the method by comparing results
against those computed by using a commercial FEM software and analytical solution for
two different situations, namely, large deformation and contact. Four practical applica-
tions are illustrated: large deflection of a compliant finger, mechanical contact, snap-fit
assembly, and surgical needle insertion. �DOI: 10.1115/1.2912938�
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1 Introduction
Mechanical deformable contacts are common problems in au-

tomated handling of food products �1�, tooling, fixturing, and
compliant grasping �2�, robotic assembly of snap fits �3�, and de-
sign for manufacturing of medical/biomedical devices �4�. Accu-
rate solutions to mechanical contact problems involving large de-
formation are essential to help optimize designs and improve the
performance of these systems. However, analytical solutions to
contact problems are limited because of their highly nonlinear
nature. With few exceptions, acceptable solutions to deformable
contact problems are often numerically solved. Among these
methods, finite element method �FEM� has been most popular due
to its generality and its ability to handle complicated geometry.

After decades of development, commercial FEM software has
been widely available to solve many engineering contact problems
�5,6�. The accuracy of FEM results, however, significantly de-
pends on the quality of the mesh. For contact problems, the mesh
density must be maintained at a sufficiently high level around the
contact region to reasonably obtain accurate results. However, ad-
ditional elements in noncontact regions do not generally help im-
prove the overall accuracy. Thus, the mesh density should not be
uniformly high as they would simply slow down the computa-
tional speed; clearly, an appropriately designed mesh is very im-
portant for a FEM analysis so that accurate results can be effi-
ciently obtained. This is especially true for solving contact
problems where a large number of iterations are often needed for
the highly nonlinear solution to converge. However, for contact
problems involving large deformation, it is very difficult to con-
struct a good initial mesh even with the help from an experience
FEM analyst because the contact region in such a problem cannot
be accurately located before the computation begins. Thus, it is
desired to have a method that can automatically identify large

error regions and can systematically increase the nodal density in
those regions to improve the overall accuracy with minimum or
no human involvement. Previous researches have developed adap-
tive FEM algorithms �7–12� to solve this problem. Although FEM
meshes provide the generality to handle complicated geometries,
appropriate mesh structures are often difficult to create or modi-
fied especially for applications where meshes must be automati-
cally reconstructed during the computational process. Consider-
able research effort must be devoted to develop an adaptive mesh
generation and deletion algorithm �12� in order to simulate dy-
namic contact/impact problems. Existing mesh generation pro-
grams for FEM, in general, have difficulties to simultaneously
meet the demands of both accuracy and computational efficiency
in computation due to the stringent shape requirement of FEM
elements; additional manual modification of the meshes is often
employed �see, for examples, an assumed strain approach �13�,
superelement technique �14� for frictionless contact problems of
isotropic elastic materials, and mortar-FEM �15� for surface to
surface contacts�.

Recently, meshless methods �MLMs� �which inherit many ad-
vantages of FEM and yet need no explicit mesh structure to dis-
cretize geometry� have been gaining attention �16–18�. ML meth-
ods have been built on the same theoretical framework of FEM.
The construction of the basis function for MLM, however, does
not rely on the mesh structure. This significantly reduces the dif-
ficulties of developing an automatic algorithm to increase node
density, and makes MLM a very attractive alternative to FEM for
solving engineering problems where automatic remeshing is
needed. Recently, research efforts have been seen in solving two
technical problems related to adaptive MLM. The first problem is
to estimate computational error in MLM. Methods such as re-
sidual technique in Ref. �19� and recovery technique in Ref. �20�
are effective, but they are often mathematically difficult to derive
and relatively complicated to apply in practice. The second prob-
lem is the development of a nodal insertion algorithm for recon-
structing the integration cells after the nodes are inserted. Most
existing adaptive MLMs use a background cell technique, which
demands a significant amount of computation time particularly
when the nodal distribution becomes irregular. Methods �such as
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quadtree technique� have been proposed to improve the efficiency
of the reconstruction process �21,22�. However, the addition of the
computational load cannot be totally eliminated. In Ref. �23�, a
stabilized conforming nodal integration technique has been pro-
posed to avoid the need for constructing background cells. This
method has some successful applications in adaptive computation,
for example, Ref. �24�, but its extension to three dimensional
computations remains a challenge. In this paper, we develop an
adaptive MLM for solving nonlinear problems of mechanical con-
tact involving large deformation.

The remainder of this paper offers the following.

1. We present a general formulation for solving large-
deformation mechanical contact problems, and the numeri-
cal method for solving for the solutions using MLM. This
formulation, which applies the sliding line algorithm �25�
along with the penalty method �6� for handling contact con-
straints, does not rely on small �or linear� displacement as-
sumptions commonly made in formulating mechanical con-
tacts. Thus, the solution method presented here is rather
general and can be used to solve nonlinear contact problems
with large deformation.

2. We have developed an adaptive MLM for solving nonlinear
mechanical problems with emphases on contact problems. In
FEM, the posteriori error estimation technique �26,27�,
which has been based on results obtained by different-order
polynomial basis functions, is easy to use and popular in
practice. However, the basis function in MLM is, in general,
not a polynomial; the posteriori error estimation technique
developed for FEM cannot be directly applied to MLM. We
present here a modified error estimation �built on two differ-
ent support sizes of a basis function� to identify regions of
large computational errors for automatic node insertion. We
derive the error estimation based on mechanical stresses
since large displacement due to rigid body motion does not
necessarily result in mechanical stresses. In addition, we use
the partition unity integration technique �28� to avoid the
reconstruction of integration cells during the adaptive pro-
cess.

3. Four examples are given to illustrate the automatic node
inserting procedure of the adaptive MLM algorithm and its
effectiveness in simulating large mechanical deformation
and/or contact. As will be shown, unlike FEM where exces-
sively large deformation could cause severe element distor-
tion and consequently break down the simulation, the adap-
tive MLM algorithm is able to construct basis functions
without using mesh structure.

4. The adaptive MLM algorithm for solving mechanical con-
tact problems has been validated by comparing the MLM
computed results against the analytical solution whenever
possible, and those simulated using ANSYS �a commercial
finite element analysis package�.

2 Formulation of Mechanical Contact and Deforma-
tion

Mechanical contact problems are formulated for solving with
meshless methods in weak form. Contact is then modeled as a
constraint imposed onto the weak-form formulation.

2.1 Formulation of Mechanical Contact. Consider two bod-
ies �A and �B bound by boundaries �A and �B, respectively, as
shown in Fig. 1, where X is the original undeformed coordinate of
a particle, and xA�X , t� and xB�X , t� represent the deformed coor-
dinate of an arbitrary particle on the Bodies A and on B at time t,
respectively. Physically, contact can be interpreted as a constraint
imposed on continuum mechanics implying that the two bodies
cannot penetrate into each other:

�A � �B = 0 �1�

Defining the contact condition. Although the contact constraint
�1� can be easily understood, it is inconvenient to numerically
handle as computational methods require a discretized form. Thus,
we formulate the contact problem as a displacement constraint
posed on discretized nodes. The distance between two particles on
�A and �B can be expressed as a gap function gn�X , t�, which
obeys the following rules:

gn�X,t���0 when two points are not in contact

=0 when two points are at contact

�0 penetration occurs
� �2�

The first two conditions in Eq. �2� state that the distance between
the two points at the same contact should be zero when the two
bodies are in contact or greater than zero when they depart. The
last condition in Eq. �2� is physically invalid since the two bodies
cannot move into each other. However, small penetration is nu-
merically necessary such as in penalty methods. In formulating
the contact problem, the penalty method assumes that the normal
component of the contact force �cn is proportional to gn:

�cn = � 0, gn � 0

kngn, gn � 0
� �3�

where the penalty proportionality kn is a very large number. This
approximation approaches ideal contact as kn→�. Since gn is
negative when there is a contact, the force vector �cnn points
outward at the boundary of the contact object.

Effect of friction. Once the contact force in the normal direction
is known, the tangential component of the contact force �or the
friction force� �ct can be obtained by the classic Coulomb friction
law in Eq. �4�: stick occurs if

0 � 	�ct	 � − 	�cn

slip occurs if

	�ct	 = − 	�cn �4�

where 	 is the friction coefficient. Since there is a need to quan-
titatively determine the current state of contact �either “stick” or
“slip”�, we introduce another gap function gt to depict the distance
that the contact point slips for two adjacent time steps. With gt, �ct
can be computed as follows:

�ct = � ktgt, 	�cn � 	ktgt	 �stick�
	�cn sgn�gt� , 	�cn � 	ktgt	 �slip� � �5�

where kt is the tangential penalty parameter. As in the treatment
for the normal contact force in Eq. �2�, the first condition in Eq.
�5� does not exactly satisfy Coulomb law since for the stick situ-
ation, gt
0; as a result, �ct must be zero as well. However, the
friction force can be approximately obtained if we allow for a
small slipping distance, and as kt increases Eq. �5� approaches the
ideal Coulomb law. Unlike �cn, which is always negative, when
there is a contact, the sign of �ct can be positive or negative
depending on the direction of the slip.

Discretization of contact for numerical solutions. In the dis-
cretized domain, the two contact bodies are referred here as the
slave and master. The assignment of master and slave is arbitrary
and exchangeable. The coordinates of the discrete nodes are de-
fined in Fig. 2, where xs and xc are the slave node and the contact

Fig. 1 Illustration of contact between two bodies
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point on the master segment, respectively, xm1 and xm2 are the two
adjacent master nodes, and xc0 is the contact point of the last
computational step. In Fig. 2, n and t are, respectively, the unit
normal and tangential vectors at xc. The vector t can be computed
from the master nodes

t = �xm2 − xm1�/� where � = �xm2 − xm1� �6�

and n can then be obtained from the orthogonality n=ez
 t,
where ez is a unit vector along the z axis.

The normal gap function gn, which is defined as the distance
from the slave node to the master segment, can be computed as
follows:

gn = �xs − xm1� · n �7�

Similarly, the tangential gap function gt, which is the distance
between xc and xco, can be computed as

gt = �xc − xc0� · t �8�

2.2 Formulation of Large Deformation Mechanics. For
static or quasistatic problems involving large deformation, the
three governing equations are given by Ref. �29�,

�
j=1

3
�Pji

�Xj
+ �0b0i = 0 �i = 1,2,3� �9�

where �0 and b0 are the density and body force of the original
undeformed state, and Pji is the element of the first Piola–
Kirchhoff �PK� stress tensor P. For linear, small displacement
problems, the Cauchy stress � is used in place of P. To solve Eq.
�9� for the displacement function u as an independent variable, the
asymmetric stress tensor P is transformed to the symmetric sec-
ond PK stress tensor S by

Pji = �
r=1

3

Sir
�xr

�Xj
�10�

where Sir is the element of S�R3
3 �that is related to the dis-
placement u through a material constitutive model�. In this paper,
general Hooke’s law is used:

Sir = �
k=1

3

�
l=1

3

Cirkl��kl + �̄kl� �11�

where Cirkl is the element of the material compliant tensor C �a
material property�, and �kl+ �̄kl are the terms in the element of the
Green’s strain tensor given by

�kl =
1

2

 �uk

�Xl
+

�ul

�Xk
� �12a�

and

�̄kl = �
m=1

3
�um

�Xk

�um

�Xl
�12b�

For linear small displacement problems, the higher order terms in
the Green’s strain tensor can be ignored or �̄kl�0; the Green’s
strain tensor reduces to Cauchy strain �kl.

To complete the formulation so that the solution to Eq. �9� is

physically relevant, we consider two types of boundary conditions
�BCs� for a continuum body; the Dirichlet and Neumann BCs
correspond to the displacement ūi and traction t̄i �or force per unit
area� BCs respectively:

ui = ūi �i = 1,2,3� on �u �13�

�
j=1

3

Pijnj = t̄i �i = 1,2,3� on �t �14�

where n is the normal vector of the boundary.

2.3 Weak-Form Formulation of Contact Mechanics. The
basic MLM approximation form for an unknown displacement
function u�X� is

u�X� = x − X = �
i=1

n


i�X�ui �15�

where ui is the nodal control value associated with the ith node,
and 
�X� is a ML basis function that can be constructed, for
example, by using reproducing kernel method �30�. If the ML
basis function at the ith node is an interpolating function, ui is the
displacement at this node ui=u�Xi�. Otherwise, ui�u�Xi�.

The large deformation problem is numerically formulated in
weak form. For this, we multiply both sides of Eq. �9� by the ML
basis functions, and integrate the resulting equation by parts,
which leads to the following governing equation in weak form:

�
�0

�
j=1

3 
 �
k

�Xj
Pji�d�0 −�

�0


k�0bid�0 −�
�0


kt̄id�0 = 0

�16�

Note that 
k is the basis function at the kth node.
We formulate the contact problem by using the penalty method

as follows:

�Wi = �We + �Gp �17�

where Wi and We are the virtual internal and external works with-
out contact constraint, Gp is the virtual work contributed by the
contact force �cn and �ct, and

Gp =�
�c

�cngn + �ctgtd� �18�

The variations of Wi and We are given by

�Wi =�
�0

�
I

�Xj
Pji�xId�0 �19�

and

�We =�
�0


I�0bi�xId�0 +�
�0


It̄i�xId�0 �20�

By incorporating the assumptions �3� and �5� in the penalty
method, the variation of Gp becomes

�GP =�
�c

�cn�gn + �ct�gtd� �21�

where the variation of the gap functions can be derived from Eqs.
�7� and �8�:

�gn = �n, − �1 − ��n, − �n�T · �xw and

�gt =
�

�o
�t, −

gn

�
n − �1 − ��t,

gn

�
n − �t�T

· �xw

where �xw= ��xs ,�xm1 ,�xm2�T, �= �xs−xm1� · t /�, and � and �o

Fig. 2 Contact gap function between two discretized bodies
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are the current and previous distances defined in Eq. �6�.
In summary, the governing equation in weak form can be ob-

tained by substituting Eqs. �18�–�20� into Eq. �16�. As shown in
Eq. �10�, �11�, �12a�, and �12b�, the first PK stress tensor P is a
nonlinear function of displacement u. Thus, for large deformation,
the discretized governing equations in weak form are a set of
nonlinear system equations, the solution of which can be obtained
by applying the Newton method. The natural �or Neumann�
boundary conditions are applied in the process when the govern-
ing equations are converted to weak form. The essential �or Di-
richlet� boundary conditions are applied before solving the linear-
ized sets of weak-form governing equations. To impose contact
constraints by using the penalty method, the penalty parameters
must be properly chosen. If the penalty parameters are too small,
the contact penetration will be too large. On the other hand, if the
penalty parameters are too large, the tangent matrix will be ill
condition. In our implementation, the penalty parameters are cho-
sen to be relatively small for the initial computation. Once the
initial computation is complete, the contact penetration will be
checked. If the contact penetration is not smaller than the preset
threshold, the penalty parameter will be increased and the compu-
tation will continue.

3 Adaptive MLM for Computation Mechanics
A simple way to improve the accuracy of the numerical ap-

proximation is to uniformly increase the nodal density in the
whole computational domain. This method, however, is inefficient
if large errors only occur in certain regions. A more effective way
is to estimate the error distribution and accordingly insert addi-
tional nodes, or more specifically, into the large error regions.

3.1 Error Estimation. We introduce an error estimation tech-
nique for the adaptive ML computation based on two different
support sizes:

ẽ�x� = �
i=1

n


i,d�x��i,d − �
i=1

n


i,2d�x��i,2d �22�

where ẽ�x� is the estimated error, 
i,d and 
i,2d denote the basis
functions at the ith node with a support size d and 2d, respec-
tively, �i,d is the solution solved in the previous computation step,
and �i,2d is the fitted result by using the basis function with a
support size of 2d. The rationale for Eq. �22� can be explained
with the aid of Fig. 3, which compares two different support sizes
of a RPK basis function. In general, the larger the support size, the
smoother is the basis function, and more difficult to approximate a
function with an abrupt change in the solution. Thus, regions of
large errors can be characterized by comparing the approximation
solutions solved using the two different basis functions. As will be
shown later in Example 1, numerical experiments have confirmed
this finding.

3.2 Adaptive Node Insertion. Once the errors are estimated
from Eq. �22�, locations of large errors are identified as follows:

∀xa:	ẽ�xa�	 � ep �23�

where xa is the test location and ep is a specified error threshold.
Additional nodes can be inserted into the computational domain
by using the Voronoi plot �31� technique that constructs one
Voronoi cell for each node. As shown in Fig. 4, a Voronoi cell is
a polygon containing all the points closest to the node that it
surrounds. The error at the vertices of each Voronoi cell is com-
puted from Eq. �22�. If the error satisfies criterion �23�, a new
node is created at that point, as illustrated in Fig. 4. The three
triangles at the corners of a Voronoi cell are example regions of
large numerical errors. The support size of the inserted node is
calculated by using Eq. �24� as the maximum distance from the
node to its surrounding nodes whose Voronoi cell is adjacent to
this node:

ri = ap max��x j − xi�� �24�

where ri is the support radius for the ith node, xi and x j are the
coordinates of the ith and jth nodes, respectively. The Voronoi cell
of the jth node is adjacent to the Voronoi cell of the ith node. In
Eq. �24�, ap is a constant coefficient normally taken a value be-
tween 1 and 3. For the newly inserted node, the choice of the
support radius of the basis function is a trade-off between two
considerations: It must be sufficiently large to cover enough nodes
for constructing the ML basis function but kept small to localize
the effect of the newly inserted nodes. Additionally, computational
load increases as the support radius increases.

3.3 Partition Unity Integration. When using partition unity
integration, a new integration cell is automatically created once a
new node is inserted as illustrated in Fig. 5, and thus this numeri-
cal integration scheme is very suitable for adaptive computation.
Most of the basis functions �including the RKP method �30�� used
in MLM have the partition unity property:

�
i=1

n


i�x� = 1 �25�

with which the integration for an arbitrary function f�x� in the
computational domain can be computed by using as follows:

Fig. 3 RKP basis function with two different support sizes

Fig. 4 Voronoi plot with three large error point

Fig. 5 Partition unity integration cells
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�
�

f�x�dx =�
�

f�x��
i=1

n


i�x�dx = �
i=1

n �
�

f�x�
i�x�dx �26�

where � is the computational domain. To exclude points outside
the computational domain, Eq. �26� is written such that the inte-
gration is within the support domain Si of ith basis function:

�
i=1

n �
�

f�x�
i�x�dx = �
i=1

n �
Si

f�x�P�x�
i�x�dx where

�27�

P�x� = �1 when x � �

0 when x � �
�

The global integration for the whole computational domain is
divided into n subintegration domains and performed upon the
support domain of n basis functions. Because the support domain
of the basis functions, in general, has a regular shape, the conven-
tional numerical integration scheme such as Gaussian quadrature
can be easily applied.

3.4 Nodal Insertion for Computation Mechanics. In Sec.
3.1, the weak-form formulation is based on displacements, which
may simply be a result of a rigid body motion and do not neces-
sarily induce stresses or strains in the mechanical body. For error
estimation in solving mechanical problems, the stress or strain is a
more appropriate quantitative variable.

The mechanical stress is a nine-component tensor �ij �or Sij in
the case of large deformation�, which in matrix form can be rep-
resented as a 3
3 symmetric matrix. The three principal stress
components, which are usually used as criteria to determine ma-
terial failure, are the eigenvalues of the stress matrix. They are
coordinate independent and can be utilized to locate the region of
high stresses. The overall magnitude of the stress Tin can be writ-
ten as

Tin = �
i=1

3

�i
2 �28�

where �i is the eigenvalue of the stress matrix. As shown in the
Appendix, Tin is computed from

Tin = ��
i=1

3

�ii�2

+ 2�
i=1

3

�
j=1

3

�ij��ij
2 − �ii� j j� where

�29�

�ij = �1 when i � j

0 when i = j
�

The error estimation for inserting additional nodes in solving
mechanical problems can be executed as follows:

1. determine an appropriate support size for the ML basis func-
tion

2. compute the displacement field u�X� with the original basis
function

3. fit the displacement result by using the basis function but a
larger support size

4. compute the stress field ��x� from the linear or nonlinear
strain �12a� and �12b� by using the original and the new
displacements

5. compute Tin for the original and the new results
6. estimate the error as the difference between two stress

magnitudes.

Example 1: Adaptive MLM for computation mechanics. To il-
lustrate the error estimation and node insertion in the adaptive
MLM computation, we consider a 2D finger with one of its ends
clamped and a vertical shear force P applied at the other free end.
Since exact solutions for large deformation are not available for
comparison, FEM is chosen here as a basis for illustration. We

compare MLM results against those computed by using ANSYS,
for which condensed 288 second-order elements �937 nodes� are
used to ensure the accuracy of the FEM results. The analysis is
done with “large deformation static” option in ANSYS. Figure 6
shows the parameters that characterize the undeformed finger and
a typical deformed shape of the FEM-meshed finger. The material
properties �Young’s modulus E and the Poisson’s ratio 	� and
geometry of the beam are given in Table 1.

The initial uniform distribution of 7
4 nodes is used for the
MLM computation. In each adaptive computation, only the
Voronoi cells inside the boundary are kept, and the infinite
Voronoi cells are cut off by the boundary. In addition, potential
new nodes inside the boundary are checked by using a boundary
mesh to ensure that there are no invalid nodes being added. After
three adaptive computations, the total number of nodes increases
to 99. The difference in the y-displacements between the adaptive
MLM and the FEM solution was computed for each of the itera-
tions. Figures 7 and 8 illustrate the computed results. In Fig. 7,
error=100% 
 �yMLM−yFEM� /yFEM; large % errors are primarily
located near x=0 where the beam is clamped. Figure 8 shows a
snapshot of the node distributions after two adaptive computa-
tions, where “�” and “
” denote the original and adaptive in-
serted nodes respectively. As expected, new nodes, are automati-
cally inserted to the regions near the clamped end of the beam.
This implies that the adaptive algorithm correctly identifies the
large error regions, then accordingly inserts new nodes to those
regions, and effectively reduces the computational errors.

Fig. 6 FEM mesh and its deformed result „ANSYS…

Table 1 Parameters for Example 1

l �m� h �m� E �MPa� 	 P �kN�

48 12 30 0.0001 1

Fig. 7 Percentage error of MLM for four consecutive adaptive
computations
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4 Adaptive MLM for Mechanical Contact Simultation
We illustrate here three mechanical contact examples. The first

example, where analytical solution is available, is to validate the
adaptive MLM and contact algorithm. We also compare the results
against the solution obtained from ANSYS. The second example
investigates the effect of friction for a snap-fit mechanism. The
third example shows the potential of MLM in medical surgery
applications. Since the focus here is to illustrate the adaptive
MLM for solving contact problems, only 2D example problems
are considered, where a surface mesh is used to formulate and
compute the contact.

Example 2: Contact between rigid and elastic objects. Figure 9
schematically shows a classic two-body contact problem, where a
small rigid object �which may be a rigid punch or robotic finger�
is normally driven into an elastic body. Both objects are infinite in

the z-axis. The structure is symmetric with respect to the y-axis;
thus, only half of the geometry on the positive x-axis is solved.
The closed form analytical solution describing the displacement
along the y-direction for the frictionless case can be found in Ref.
�32�.

uy�x� = �y − � 0 when x � a

2�1 − �2�P

�E
ln� x

a
+�x2

a2 − 1� when x � a �
�30�

where uy is the displacement in the y direction, P is the force
applied on rigid punch, a is the half-width of rigid punch, and dy
is the distance that the rigid object moves into the elastic body.

To demonstrate the effectiveness of the adaptive method, no
special node refinement is made around the contact region and the
computation starts with a uniform distribution of 11
11 nodes.
Specific values used in the simulation are given in Table 2. After
three successive computations, the total number of nodes in-
creases from its initial 121 nodes to 194. Figures 10�a� and 10�b�
show the Voronoi diagrams of the initial and second node distri-
butions. The final node distribution is shown in Fig. 10�c�. As
illustrated in Fig. 10, the adaptive algorithm effectively identifies
the contact region and automatically inserts additional nodes
around the contact region. The MLM and FEM results are com-
pared against the analytical solutions in Fig. 11, where FEM uses
a total of 544 nodes with special refinement around the contact
area.

As shown in Fig. 11, the final MLM result greatly improves
after three adaptive computations from the initial calculation.
Both FEM and MLM agree very well in final results but are
slightly higher than the analytical solution. The discrepancy is
somewhat expected because the analytical solution assumes that
the elastic body has an infinite depth in the x-direction while the
numerical solutions base on a finite dimension.

Example 3: Contact of a snap fit. Snap fits are commonly used
for locking, attachment, or part assembly. In practical application,
sharp edges are often used in the snap fit mechanism to provide a

Table 2 Geometry parameters of Example 2

L �m� H �m� A �m� �y

0.08 0.04 0.0025 0.0001

Fig. 8 MLM nodes after the final adaptive computation

Fig. 9 Rigid punch contacts with elastic foundation

Fig. 10 Adaptive node insertion
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positive retention. In addition, a snap-fit must have a large reten-
tion force but a small insertion force. Since these forces are the
result of the contact between components of a snap fit, contact
analyses are very important for designing a snap-fit mechanism.
We demonstrate here the use of MLM for analyzing contact forces
of a snap fit, and compare the results against those computed by
ANSYS.

A typical snap-fit geometry is shown in Fig. 12. Without loss of
generality, the retention block �that is assumed to be undeform-
able� horizontally moves from right to left �xc is not fixed in this
case�. The cantilever hook is clamped at the left end and deflected
upon contact; the geometry and material parameters of the canti-
lever hook along with the options used for ANSYS and MLM are
given in Table 3.

Figure 13 compares the contact forces computed by using
MLM against those obtained by using ANSYS for both frictionless
�	=0� and frictional �	=0.2� contacts. The MLM and FEM
closely agree with each other up to the location where the edge of
the retention block passes the tip of the jaw, beyond which ANSYS

computation breaks down due to the large distortion of elements.
Large stresses build up when the corner �xc ,yc� reaches the tip of
the jaw; as a result, FEM has excess element distortion around the
corners and leads to divergence. More elements and finer load
steps do not improve the result. Unlike FEM, MLM is free from
mesh distortion and predicts the contact forces throughout the
snap fitting process. It is interesting to note that the contact force
in the y direction only slightly increases with friction, but the
contact force in the x direction significantly increases. This result
suggests that the cantilever-hook surface should be smooth in or-
der to reduce the insertion force of a snap fit.

In this example, we assume that the assembly process is rela-
tively slow and can be quasistatically analyzed. The adaptive
MLM can be extended to solve dynamic problems, the implemen-
tation of which is tedious but straightforward. As in the static
problem, additional nodes can be added to the contact location.
However, for sliding, the added nodes in the previous contact
location are removed once the contact moves to a new location;
the removal of these nodes helps improve the efficiency. Thus, for
solving the dynamic problem, the adaptive MLM requires track-
ing the added nodes in each time step, checking if the contact
moves to the new location in the new time step, and if so remov-
ing the added nodes in the previous time step.

Example 4: Contact simulation of needle insertion. Flexible
medical devices �such as needles and catheters for inserting into

Fig. 11 Comparison between MLM, FEM, and analytical result

Fig. 12 Geometry of a snap-fit mechanism

Table 3 Simulation parameters of snap-fit mechanism

Parameters Values Numerical 2D model

Young’s modulus �Pa� 2.62E9 Plane stress �thickness of 10 mm�
Poisson’s ratio 0.4 ANSYS with 3282 nodes
Thickness w �mm� 3.2 Element type: Plane2,

Contact175, Target169lf �mm� 57
lh �mm� 76 MLM

Number of nodes: 169 �initial�
180–200 �after two adaptive

computations�

Radius r �mm� 50
xa ,ya �mm� 49.9, −41.0
yc �mm� 2.6

Fig. 13 Contact forces
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human or animal bodies to perform different procedures� are no-
toriously difficult to model as the devices and/or the targets are
highly deformable. Design for manufacturing of these devices has
been relied on empirical techniques. This example illustrates an
application of MLM as an attractive means for analyzing a design.

Subcutaneous insertion of needles is one of the most common
procedures employed in modern clinical practice. Applications of
these procedures include the biopsy of deep-seated, prostate
brachytherapy, and neurosurgical probe insertion, which are usu-
ally without visual feedback from below the skin’s surface. Maxi-
mum force and stresses generally occur at the contact point before
the needle penetrates the surface. As demonstrated in this ex-

ample, the adaptive MLM can computationally provide efficient
detailed information at the contact region between the surgery tool
and tissues for applications in the medical surgery simulation.
Specifically, we simulate here a needle contacting an elliptical
elastic body. The material properties and initial geometry of the
deformable body, along with the initial node distribution of the
MLM, are shown in Fig. 14. No special refinement has been made
around the contact region for initial node distribution. The needle
vertically moves downward from its initial position. The contact
at the tip of the needle is computed for four locations starting from
the location at 9.99 mm and then increasing at an interval of
0.25 mm.

At the initial or first contact position, four adaptive computa-
tions are performed. The converged results for the initial node
distribution and the three subsequent adaptive computations are
shown in Figs. 15�a�–15�d�. Figure 15�a� shows that computation
with a small number of initial nodes cannot reveal the detailed
deformation at the contact location. With more nodes used around
the contact region, a small shape change can be seen at that loca-
tion from Fig. 15�d�. The corresponding contact forces of the four
computations at the initial position are shown in Fig. 15�e�. The
convergence can be observed from the fact that the difference
between the contact forces from two computations becomes
smaller as the adaptive procedure proceeds.

Table 4 Contact force

Location of needle tip�mm� 9.99 9.74 9.49 9.24

Contact force �N� 24.2 31.1 36.5 42.6

Fig. 14 Initial geometry and node distribution „deformable
body: Young’s modulus E=1Ã106 Pa; Poisson’s ratio �=0.4…

Fig. 15 Result after each adaptive computation at the first position

Fig. 16 Results of MLM simulation
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By inheriting the nodes added from the first position, three
additional adaptive computations are performed at the second po-
sition. No significant improvement was observed between these
computations, indicating that the node density is sufficiently large.
The deformed geometry and the node distributions at the other
three positions �9.24
10−3� are plotted in Figs. 16�a�–16�c�. The
final results of the contact force at the four locations are listed in
Table 4. The contact force increases as the needle moves down-
ward.

Figures 17�a�–17�d� show the equivalent stress distribution
around the contact region for each of the needle positions. As
expected, the magnitude of stress increases as the needle moves
from Position 1 to Position 4, and its maximum occurs at the
contact location. The stress information, which serves as the cri-
terion for material failure in the theory of fracture mechanics,
provides a means to judge when the penetration happens.

5 Conclusions
An adaptive MLM method for solving large deformation and

mechanical contact problems has been presented. This method,
utilizing sliding line and penalty methods for handling contact
constraint, has been validated for two different situations; namely,
large deformation and contact. Four practical examples have been
illustrated. Simulation results show that the adaptive MLM algo-
rithm can effectively identify regions of large computational er-
rors, progressively add nodes accordingly. As demonstrated by
using intermediate results, the overall error is reduced as the adap-
tive procedure proceeds. These illustrative examples also demon-
strate that the adaptive MLM has potentials in automated handing
of deformable bodies �such as food products� as well as the manu-
facture of compliant devices �such as medical needles, optic fi-
bers, and catheters� for inserting into the human body.

The adaptive MLM presented in this paper is applicable to
other problems, which may have different boundary conditions
�for example, mechanical contact between two deformable ob-
jects�; additional examples can be found in Ref. �33�. For a 2D
contact problem, the adaptive MLM can be effectively formulated

with a surface mesh. For 3D problems with extremely large de-
formation, a 3D surface or volume mesh may be employed; this
will be considered in the future research.
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Appendix
The stress matrix is symmetric and can thus be written as

��11 �12 �13

�12 �22 �23

�13 �23 �33
� �A1�

The stress matrix has real eigenvalues ��1 ,�2 ,�3�, which can be
solved from its characteristic equation

��11 − � �12 �13

�12 �22 − � �23

�13 �23 �33 − �
� = 0 �A2�

which leads to

�1 + �2 + �3 = �11 + �22 + �33 = �
i=1

3

�ii �A3�

and

�1�2 + �2�3 + �3�1 = �
i=1

3

�
j=1

3

�ij��ij
2 − �ii� j j� �A4�

Since

Tin = �
i=1

3

�i
2 = ��1 + �2 + �3�2 − 2��1�2 + �2�3 + �3�1� �A5�

with Eqs. �A3� and �A4�, we have

Fig. 17 Equivalent stress distribution „N/m2
…
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�
j=1

3

�ij��ij
2 − �ii� j j� �A6�
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The Dynamic Compressive
Response of Open-Cell Foam
Impregnated With a Newtonian
Fluid
This analysis considers the flow of a highly viscous Newtonian fluid in a reticulated,
elastomeric foam undergoing dynamic compression. A comprehensive model for the ad-
ditional contribution of viscous Newtonian flow to the dynamic response of a reticulated,
fluid-filled, elastomeric foam under dynamic loading is developed. For highly viscous
Newtonian fluids, the flow in the reticulated foam is assumed to be dominated by viscous
forces for nearly all achievable strain rates; Darcy’s law is assumed to govern the flow.
The model is applicable for strains up to the densified strain for all grades of low-density,
open-cell, elastomeric foam. Low-density, reticulated foam is known to deform linear
elastically and uniformly up to the elastic buckling strain. For strains greater than the
elastic buckling strain but less than the densified strain, the foam exhibits bimodal be-
havior with both linear-elastic and densified regimes. The model presented in this analy-
sis is applicable for all strains up to the densified strain. In the bimodal regime, the
model is developed by formulating a boundary value problem for the appropriate Laplace
problem that is obtained directly from Darcy’s law. The resulting analytical model is more
tractable than previous models. The model is compared with experimental results for the
stress-strain response of low-density polyurethane foam filled with glycerol under dy-
namic compression. The model describes the data for foam grades varying from
70 ppi to 90 ppi and strain rates varying from 2.5�10�3 to 101 s�1 well. The full model
can also be well approximated by a simpler model, based on the lubrication approxima-
tion, which is applicable to analyses where the dimension of the foam in the direction of
fluid flow (radial) is much greater than the dimension of the foam in the direction of
loading (axial). The boundary value model is found to rapidly converge to the lubrication
model in the limit of increasing aspect ratio given by the ratio of the radius R, to the
height h, of the foam specimen with negligible error for aspect ratios greater than R /h
�4. �DOI: 10.1115/1.2912940�

Keywords: boundary value problem, fluid-structure interaction, foam, lubrication
approximation, porous media

1 Introduction

Over the past century, much of the research in developing ar-
mor has focused on providing protection against ballistics. This
research has culminated in highly advanced armor for defending
against projectiles �1�; however, existing armor is inefficient at
protecting against the enormous pressure gradients generated by
explosive devices. These blast waves can cause severe damage to
the human body as well as vehicles and structures. Recently, a
novel reactive armor design to mitigate the effects of blast waves
has been explored �2�. This design incorporates open-cell �reticu-
lated� foams filled with shear thickening, non-Newtonian liquids
into existing composite armor. Open-cell foams filled with non-
Newtonian liquids have the potential to absorb energy and impede
shock waves, which decrease the resulting pressure gradient ex-
perienced by underlying media �e.g., tissue�. As a first step in
modeling this nonlinear phenomenon, we analyze the flow of a
Newtonian fluid through an open-cell, elastomeric foam. The flow
of fluids through open-cell foams has been investigated exten-
sively for a variety of engineering applications, but characterizing

the contribution of the fluid to energy absorption under dynamic
loading is still a critical area of research. Previous research has
resulted in the development of complex models to describe the
contribution of Newtonian fluids in an open-cell foam under im-
pact loading. Hilyard �3� provided one of the first and only in-
depth analytical and experimental analyses of the contribution of
fluid flow to the impact behavior of open-cell foams, developing a
third order, nonlinear equation of motion. Rehkopf, et al. �4�,
Mills and Lyn �5�, and Schraad and Harlow �6� all developed
finite difference and finite volume techniques to analyze the con-
tribution of the fluid flow in an open-cell foam under dynamic
loading. However, the inherent complexity of these models has
limited their use.

In this paper, we develop a tractable but comprehensive analyti-
cal model for the additional contribution of viscous Newtonian
flow to the stress-strain response of low-density, reticulated, fluid-
filled, elastomeric foams under dynamic loading. Elastomeric
foams deform in a linear-elastic manner, primarily by cell wall
bending at strains below the elastic buckling strain. At strains
between the elastic buckling strain and the densified strain, local
bands of cells collapse, so that the foam has both a linear-elastic
regime and a densified regime. As the overall strain increases, the
densified regime expands at the expense of the linear-elastic re-
gime �7�. We consider a model, which governs both the single
regime and the bimodal regime of the fluid-filled foam. The prob-
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lem considers the axial compression of a cylindrical specimen of
low-density, elastomeric foam filled with a highly viscous New-
tonian fluid between a fixed plate and a moving plate �Figs. 1 and
2�. Based on the low values of the characteristic Reynolds number
in the pores, the flow of viscous Newtonian fluids in porous media
is dominated by viscous forces for nearly all achievable strain
rates; therefore, Darcy’s law is assumed to govern the flow. Dar-
cy’s law is selected instead of the slightly more complicated
Brinkman–Darcy model, which incorporates both a viscous con-
tribution and an additional term, attributed primarily to the inertial
forces dominant in the high Reynold’s number regime �Dawson et
al. �7��. For the more complex bimodal regime problem, Darcy’s
law is used to formulate a boundary value problem with Laplace’s
equation as the governing differential equation. The solution to
Laplace’s equation in cylindrical coordinates for the pressure dis-
tribution in the fluid is formulated in terms of an infinite series of
Bessel functions. The solution rapidly converges within the first
few terms and is readily evaluated numerically. The pressure dis-
tribution is used to find a model for the contribution of the fluid to
the stress-strain response of the fluid-filled foam.

The model is analytically tractable and applicable for strains up
to the densified strain for all grades of low-density, flexible, open-
cell foam. We also develop a more simple model based on the
lubrication approximation to approximate the more comprehen-
sive boundary value model in the limit where the characteristic
dimension in the direction of fluid flow �radial� is assumed to be
much greater than that in the direction of loading �axial�. The
rapid convergence of the boundary value model toward the lubri-
cation, as the aspect ratio is increased, is discussed. The model is
also compared with experimental results of the stress-strain re-
sponse of low-density polyurethane foam filled with glycerol un-
der dynamic loading. The model gives a good description of the
experimental results for foam grades varying from 70 ppi
to 90 ppi and for strain rates varying from 2.5�10−3 to 101 s−1.
The model in this paper is not compared to previous models found
in literature because comparable models with the ability to char-
acterize the stress response necessitate extensive computational
effort and would require dedicating a large portion of the paper to
simply review the models and their applicability.

2 Literature Review

2.1 Stress-Strain Response of Foam. Gibson and Ashby �8�
previously developed a model for the compressive stress-strain
response of reticulated foam, neglecting any contribution of a vis-
cous fluid. The governing equations are given by �8�

�* = �E*, 0 � � � �
el
* �1�

�* = �
el
*, �

el
* � � � �D�1 −

1

D
� + �

el
* �2�

�* =
�

el
*

D
� �D

�D − �
�m

, � � �D�1 −
1

D
� + �

el
* �3�

where �� is the average, uniform stress response of the foam or
the axial compressive force divided by the cross-sectional area of
the foam, E� is the effective modulus of the foam, � is the strain,
taken to be positive in compression and given by the compression
deformation of the foam over the initial height of the foam, �

el
* is

the elastic buckling strain, �
el
* is the elastic buckling stress, and m

and D are constants associated with the microstructure of the
foam. For polyurethane foams, Gibson and Ashby �8� gave the
constant m as unity. The fully densified strain �D is the strain at
which point the cells have collapsed sufficiently that opposing cell
walls touch and further deformation compresses the cell wall ma-
terial itself. The densified strain is given by

�D = 1 − 1.4��
0
*

�s

� �4�

where �
0
* is the initial density of the foam at zero strain, and �s is

the density of the solid from which the foam is made. The con-
stant D is given by

D =
�D

�D − �
p
* �5�

where the strain �
p
* corresponds to the strain at which the stress at

the end of the plateau region begins to exceed the elastic buckling
stress.

2.2 Microstructural Behavior of Foam Under
Deformation. We utilize the model for the microstructural behav-
ior of low-density, reticulated foam under compressive strain pre-
sented by Dawson et al. �7�. The cells of the foam under compres-
sive strain remain elastic up to the linear-elastic buckling strain
�Fig. 1�. As the foam is compressed beyond the elastic buckling

Fig. 1 One-regime model of fluid-filled cylindrical foam with
strain less than the elastic buckling strain, �<�

el
* . Velocity of

fluid „solid arrow…. Relative velocity of fluid with respect to the
velocity of foam „dotted arrow….

(a)

(b)

Fig. 2 „a… Bimodal regime model of fluid-filled cylindrical foam
compressed beyond elastic buckling strain, �

el
* <�<�d. Velocity

of fluid. „solid arrow… „b…. Top symmetric half of bimodal regime
model of fluid-filled cylindrical foam compressed beyond elas-
tic buckling strain, �

el
* <�<�d, in the reference frame of the den-

sified regime. Relative velocity of fluid with respect to the ve-
locity of foam „dotted arrow….
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strain, cells buckle and collapse without laterally expanding so
that Poisson’s ratio in this regime is approximately zero. These
collapsed regions generate local bands of large deformation in
which the average diameter of the cells is reduced substantially.
The strain of the collapsed cells in these densified bands is as-
sumed to be uniform and given by the densified strain �d, while
the cells outside the densified bands remain in the linear elastic
regime, at strains given by the elastic buckling strain �Fig. 2�.
Therefore, for strains less than the elastic buckling strain, the en-
tire specimen is assumed to be uniform and completely within the
linear-elastic regime, which results in a single regime problem.
For strains greater than the elastic buckling strain but less than the
densified strain, the foam is assumed to be a two-regime problem
with both a linear-elastic region and a densified region �Fig. 2�.
Dawson et al. �7� used visual imaging to establish the value of the
densified strain �d=0.6, for low-density, reticulated polyurethane
foam. It is important to distinguish the densified strain �d from the
fully densified strain �D given by Eq. �4�, where the former effec-
tively represents the onset of the densification regime, and the
latter effectively represents the end of the densification regime.

At any given strain, the volume fractions of the cells remaining
in the linear-elastic regime �

el
* and the densified regime �d are

given by �7�

�
el
* =

��d − ���1 + �
el
*�

�1 + ����d − �
el
*�

�6�

�d =
�� − �

el
*��1 + �d�

�1 + ����d − �
el
*�

�7�

After the densified strain is exceeded, cells begin to densify fur-
ther, and this model is no longer applicable. Based on this model,
Dawson et al. developed equations for the local permeability of
open-cell foams in the linear-elastic regime, ke, at the elastic buck-
ling strain, k

el
*, and at the densified strain, kd, which are given by

�7�

ke = Ad0
2�1 − ���1 −

�
0
*

�s

1

�1 − ���
3

for 0 	 � 	 �
el
* �8�

k
el
* = Ad0

2�1 − �
el
*��1 −

�
0
*

�s

1

�1 − �
el
*��3

for � = �
el
* �9�

kd = Ad0
2�1 − �d�2a�1 −

�
0
*

�s

1

�1 − �d��
3

for � = �d �10�

where d0 is the average pore diameter at zero strain, and A is an
empirical constant given by Brace �9� as 0.025 for a porous mi-
crostructure consisting of tubes with circular cross sections. The
material properties of the foam, �

0
*, �s, and d0, are readily avail-

able and typically specified by the manufacturer. Dawson et al. �7�
also found that these models are independent of the fluid flow
direction with respect to the compression direction of the foam.

2.3 Flow in Porous Media. The flow of highly viscous New-
tonian fluids in low-density, open-cell foam with small cell sizes
�typically less than 500 
m� is dominated by viscous forces for
nearly all achievable strain rates. Therefore, the model presented
in this paper only considers flows in which the viscous effects
dominate the inertial effects. The Reynolds number Re, a measure
of the inertial forces to the viscous forces, can be used to deter-
mine where this model is applicable. A characteristic pore Rey-
nolds number based on the average diameter of a pore, d, and
average velocity through that pore, v, is given by

Re =
��d



�11�

where � is the density of the fluid and 
 is the viscosity of the
fluid. Based on an analytical study, Comiti et al. �10� proposed a
transition from the viscous dominated regime to the inertial domi-
nated regime at a critical pore Reynolds number of Re*=0.83 for
flow through low-density, porous media. This corresponds well
with the experimental findings of Gent and Rusch �11� for flow
through reticulated foam, Tek �12� for flow through porous rock,
and Dybbs and Edwards �13� for flow through fixed beds of
spheres and cylinders. Therefore, the model presented in this
analysis is taken to be applicable for Re�1 when viscous forces
dominate. Based on a transition number of Re�1, the maximum
strain rate for which this analysis accurately models the flow of a
highly viscous fluid in an open-cell foam can be determined. The
experimental results presented below consist of a dynamic com-
pression glycerol-filled, reticulated foam with an approximate ra-
dius and average cell diameter of 12.7 mm and 235 
m, respec-
tively. At 23°C, the density and viscosity of glycerol are taken to
be �=1260 kg /m3 and 
=1.1 Pa s, respectively. The maximum
strain rate for which the flow will remain in the viscous regime is
found to be approximately 600 s−1. The maximum strain rate of
the foam specimens in the experiments presented is 10 s−1, which
thus lies well within the viscous dominated regime.

3 Analysis

3.1 Fluid Contribution to the Stress-Strain Response. A
comprehensive model for the contribution of the fluid to the
stress-strain response of fluid-filled, elastomeric foam under dy-
namic compression can be developed by extending the model pre-
sented by Dawson et al. �7�. We consider the case of axial com-
pression of a cylindrical foam specimen where the lower plate is
fixed and the upper plate is moving with the magnitude of the

velocity given by 	ḣ	, or the time rate of change of the height of
the foam specimen, as shown in Figs. 1 and 2�a�. The initial
height and radius of the specimen are taken to be h0 and R. As the
foam undergoes compression, the radius of the specimen remains
unchanged while the current height is given as h�t�. This analysis
considers both the response at strains less than the elastic buckling
strain and the response at strains greater than the elastic buckling
strain but less than the densified strain. For strains less than the
elastic buckling strain, the entire specimen is assumed to be uni-
form and completely within the linear-elastic regime, which re-
sults in a single regime problem �Fig. 1�. For strains greater than
the elastic buckling strain but less than the densified strain, the
foam is assumed to coexist in two states with both a linear-elastic
regime and a densified regime �Figs. 2�a� and 2�b��.

3.2 Single Regime Model ���
el
*. We first consider the single

regime problem with strain less than the elastic buckling strain. As
the upper plate compresses the foam, the foam is assumed to
deform uniformly. The relative velocity of the fluid with respect to
the foam in the compression direction �z-direction� is taken to be
zero throughout the foam. Any nonzero relative velocity in the
z-direction would require flow up a pressure gradient in the radial
direction, which violates Darcy’s law. Therefore, neglecting gravi-
tational effects, the pressure gradient throughout the foam in the
z-direction is taken to be zero. Thus, the radial velocity of the fluid
in the linear-elastic regime Ve is uniform in the z-direction and
given as �after Gibson and Ashby �8��

Ve =
− ḣr

2h

, 0 	 � 	 �

el
* �12�

where 
 is the porosity of the foam, r is the radial distance, and h
is the current height of the foam specimen, given by h�t�=h0�1
−��. According to Darcy’s law, the gradient of the pressure across
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the specimen �P /�r for viscous Newtonian flow in the r-direction
is given as �14�

�P

�r
=

− 
Ve

ke
, 0 	 � 	 �

el
* �13�

where 
 is the dynamic viscosity of the fluid and the linear-elastic
permeability ke is taken to be isotropic. Combining Eqs. �12� and
�13� and integrating give

P* =

ḣ

4
hke
�r2 − R2�, 0 	 � 	 �

el
* �14�

where P* is the local pressure minus the atmospheric pressure at
the free surface of the foam. Neglecting inertial effects, a force
balance can be used to find an equivalent average uniform stress
distribution � f applied by the fluid to the top compression plate by
integrating the pressure field over the radius giving

� f�R2 =

0

R

	P*	h2�rdr, 0 	 � 	 �
el
* �15a�

� f =
− 
ḣR2

8
hke
, 0 	 � 	 �

el
* �15b�

3.3 Bimodal Regime Model �
el
* ����d. For strains beyond

the elastic buckling strain but less than the densified strain, the
cells of the foam are assumed to be either at the elastic buckling
strain or at the densified strain, corresponding to the bimodal re-
gime model previously discussed. The resulting pressure distribu-
tion in both regimes is more complex than in the single regime
problem and can be solved by means of coupling two boundary
value problems. In formulating the boundary conditions for this
problem, a model for the behavior of the foam must be developed.
Under axial compression, densified bands are commonly observed
to initiate in the center of the sample. Our model assumes that the
densified regime initiates in the center of the foam and symmetri-
cally propagates toward the plates through the elastic buckling of
one layer of foam �of roughly one cell thickness� at a time, as
shown in Fig. 2�a�. The foam in the elastic regime below the
densified regime �Region 1� is stationary while the foam in the
elastic regime above the densified regime �Region 3� is moving

downward with the upper plate at velocity 	ḣ	, as shown in Fig.
2�a�. Therefore, the densified regime �Region 2� is moving down-

ward at velocity 1
2 	ḣ	. In the reference frame of the densified

regime of the foam, the problem can be viewed as a completely
symmetric problem with the elastic regimes �Regions 1 and 3� of
the foam moving toward the densified regime, in opposite direc-

tions, at a speed of 1
2 	ḣ	. Since there is no flow across the center

of the densified regime by symmetry, we analyze only the top half
of the foam in the reference frame of the densified regime, as
shown in Fig. 2�b�. The problem is analyzed as two one-regime
models with local reference heights 1

2 he and 1
2 hd for the elastic

and densified regimes, respectively, given as �Fig. 2�

he = �
el
*h �16�

hd = �dh �17�
The boundary conditions at the foam-plate interfaces are no

flux conditions since the relative velocity of the fluid with respect
to the foam is zero. Therefore, according to Darcy’s law, the cor-
responding pressure gradients in the z-direction are zero at both
foam-plate interfaces. Boundary conditions applied at the inter-
face between the two regimes are given. The pressure field is
taken to be continuous between the two regimes with a disconti-
nuity in the pressure gradient, corresponding to the change in the
permeability. In addition, a mass flux corresponding to the fluid
exiting the layer undergoing elastic buckling enters both the

linear-elastic and the densified regimes at the interface between
the two regimes. Since the surface area between the layer under-
going elastic buckling and the linear-elastic and densified regimes
is much greater than the surface area of the buckling layer at the
free surface of the foam, we assume all of the fluid exiting the
layer undergoing elastic buckling flows vertically into either the
elastic or the densified regimes and neglect the radial flow in the
buckling layer out of the foam. The boundary conditions for the
two-regime problem are given as

P
d
* = P

e
* = 0 on r = R �18a�

�P
d
*

�z
= 0 on z = 0 �18b�

�P
e
*

�z
= 0 on z = 1

2h �18c�

�P
d
*

�z
=

− �1 − ��
ḣ

2kd
on z = 1

2hd �18d�

�P
e
*

�z
=

�
ḣ

2k
el
* on z = 1

2hd �18e�

P
d
* = P

e
* on z = 1

2hd �18f�

where �, determined below, is a constant representing the fraction
of the flux into the linear-elastic regime, P

e
* is the pressure in the

linear-elastic regime, and P
d
* is the pressure in the densified

regime.
As before, Darcy’s law is assumed to govern the flow of a

viscous Newtonian fluid throughout each regime of the foam and
is given as �14�

�P* =
− 
V

k
�19�

where V is the relative velocity of the fluid with respect to the
foam, and k is the local permeability, which is assumed to be
isotropic. Taking the gradient of both sides of Eq. �19�, applying
continuity for an incompressible Newtonian fluid, and considering
there is no variation in the velocity of the foam within each region
give Laplace’s equation

�2P* =
�2P*

�r2
+

1

r

�P*

�r
+

1

r2

�2P*

��2
+

�2P*

�z2
=

− 
 � · V

k
= 0

�20�
A well known method of solving Laplace’s equation in cylin-

drical coordinates is separation of variables. We assume the pres-
sure is not a function of the circumferential direction ��-direction�
and propose a solution in the form

P* = R�r�Z�z� �21�
Substituting Eq. �21� into Eq. �20� and dividing through by

R�r�Z�z� give

1

R�r�
�2R�r�

�r2 +
1

rR�r�
�R�r�

�r
+

1

Z�z�
�2Z�z�

�z2 = 0 �22�

Since the first two terms are functions of r only and the last term
is a function of z only, Eq. �22� can be broken up into the follow-
ing two equations:

1

Z�z�
d2Z�z�

dz2 = − � �23�
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1

R�r�
d2R�r�

dr2 +
1

rR�r�
dR�r�

dr
= � �24�

where � is a constant. Equation �23� is a standard second order
differential equation, which is readily solved. Equation �24� is one
form of Bessel’s equation and solutions can be expressed in terms
of Bessel functions. Combining these solutions, the solution to
Laplace’s equation for the pressure distribution in either regime of
the foam is given as

P
i
* = �

n=1

�

�Anie
knz + Bnie

−knz�J0�knr� �25�

where the index i represents either the elastic regime or the den-
sified regime with indices e and d, respectively, Ani, Bni, and kn
are constants, and J0 is a zero order Bessel function of the first
kind.

Applying both the Neumann and Dirichlet boundary conditions
in Eqs. �18a�–�18f� to the solution to Laplace’s equation given in
Eq. �25�, the pressure distribution throughout the foam can be
determined. It is recognized that each term in Eq. �25� will satisfy
the free surface boundary condition given by Eq. �18a� if

J0�knR� = 0 �26�

Equation �26� therefore gives the values of kn, corresponding to
the zeros of the zero order Bessel function. The values can be
determined from a table of Bessel functions. Typically, these so-
lutions converge very quickly, so we assume that only the first five
terms of the infinite series are necessary for most values of h /R.
The corresponding values of kn are given as

k1 =
2.405

R
, k2 =

5.520

R
, k3 =

8.645

R
, k4 =

11.792

R
, �27�

k5 =
14.931

R

To solve for the unknowns Ani and Bni, the following orthogo-
nality principle of zero order Bessel functions is utilized:



0

R

rJ0�knr�J0�kmr�dr = 0 for n � m �28�

where J0�knr� is orthogonal to J0�kmr�. Applying the boundary
conditions given by Eqs. �18b�–�18e� to Eq. �25�, multiplying
each side by r times a zero order Bessel function, and integrating
allow for each coefficients Ani and Bni to be determined by the
following set of equations:

�Andkn − Bndkn�

0

R

rJ0
2�knr�dr = 0 �29�

�Anekne�1/2�knh − Bnekne−�1/2�knh�

0

R

rJ0
2�knr�dr = 0 �30�

�Andkne�1/2�knhd − Bndkne−�1/2�knhd�

0

R

rJ0
2�knr�dr

=
− �1 − ��
ḣ

2kd



0

R

rJ0�knr�dr �31�

�Anekne�1/2�knhd − Bnekne−�1/2�knhd�

0

R

rJ0
2�knr�dr

=
�
ḣ

2k
el
* 


0

R

rJ0�knr�dr �32�

Solving Eqs. �29�–�32� gives the coefficients Ani and Bni as

And =
− �1 − ��
ḣRJ1�knR�

2kd�knR�2 sinh� 1
2knhd��J0

2�knR� + J1
2�knR��

�33�

Ane =
�
ḣRJ1�knR�

k
el
*�knR�2�1 − eknhe��J0

2�knR� + J1
2�knR��

�34�

Bnd =
− �1 − ��
ḣRJ1�knR�

2kd�knR�2 sinh� 1
2knhd��J0

2�knR� + J1
2�knR��

�35�

Bne =
�
ḣRJ1�knR�eknhe

k
el
*�knR�2�1 − eknhe��J0

2�knR� + J1
2�knR��

�36�

where J1�knR� is a first order Bessel function. Substituting Eqs.
�33�–�36� into Eq. �25� and applying Eq. �26� give the adjusted
pressure distribution in both the densified regime and the elastic
regime as

P
d
* = �

n=1

�
− �1 − ��
ḣR cosh�knz�J0�knr�
kd�knR�2 sinh� 1

2knhd�J1�knR�
, �37�

�
el
* � � � �d, 0 � z �

1
2hd

P
e
* = �

n=1

�
�
ḣR�ekn�z−�1/2�hd� + ekn�he−z+�1/2�hd��J0�knr�

k
el
*�knR�2�1 − eknhe�J1�knR�

, �38�

�
el
* � � � �d, 1

2hd � z �
1
2h

Applying the remaining boundary condition in Eq. �18f�, the
constant � can be determined numerically. Since the terms of the
pressure distribution given in Eqs. �37� and Eq. �38� decay rap-
idly, a good approximation to � can be given using only the first
term in the series

� =
k

el
* tanh� 1

2k1he�
k

el
* tanh� 1

2k1he� + kd tanh� 1
2k1hd�

�39�

The fraction of the flux into the linear-elastic regime �, as a
function of strain, is given in Fig. 3. A force balance can be used
to find an equivalent uniform stress distribution � f, applied to the
top compression plate by integrating the pressure field in the elas-
tic regime at z= 1

2h over the radius as follows:

� f�R2 =

0

R

	P
e
*	h/22�rdr, �

el
* � � � �d �40a�

� f�R2 = ��
n=1

�
2��
ḣR�2ekn��1/2�he��

k
el
*�knR�2�1 − eknhe�J1�knR���


0

R

rJ0�knr�dr� ,

�40b�

�
el
* � � � �d
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� fR
2 = �

n=1

� � 4�
ḣR

k
el
*�knR�2�e−kn��1/2�he� − ekn��1/2�he��J1�knR��

��R2J1�knR�
�knR�

�, �
el
* � � � �d �40c�

� f =
− 2�
ḣR

k
el
* �

n=1

�
1

�knR�3 sinh� 1
2knhe�

, �
el
* � � � �d

�40d�
Equation �40d� is taken to be the contribution of the fluid to the
stress-strain response of foam filled with a Newtonian fluid under
dynamic compression in the two-regime model. The dependence
of the response given by Eq. �40d� on strain is built in through the
terms � and he, which are functions of the volume fraction of the
cells remaining in the linear-elastic and densified regimes, and
therefore, are functions of the strain.

3.4 Effect of Tortuous and Anisotropic Foam
Microstructure. A discrepancy is typically found between ana-
lytical models for flow through porous media and experimental
measurements. Models are often adjusted by an empirical con-
stant, which accounts for the tortuous shape of the foam micro-
structure �15�. Similarly, empirical constants are also used to ac-
count for the tortuous microstructure of foam in studies of heat
transfer through porous media. Glicksman �16� determined an ef-
ficiency factor of 2 /3 accounted for the effective loss in the ther-
mal conductivity of porous media. Furthermore, it is known that
the permeability of low-density, open-cell foam is slightly aniso-
tropic, which may also lead to deviations of the model presented
in this analysis from experimental data. The combination of these
effects necessitates the addition of empirical constant C to the
model. Therefore, we propose that the stress contribution of a
Newtonian fluid to the response of a fluid-filled foam under dy-
namic loading is given by

� f =
− C
ḣR2

8
hke
, 0 � � � �

el
* �41�

� f =
− 2C�
ḣR

k
el
* �

n=1

�
1

�knR�3 sinh� 1
2knhe�

, �
el
* � � � �d �42�

where C is a single constant to be determined by regression from
experiments.

3.5 Squeezing Flow Between Parallel Plates. We now pro-
ceed to develop a more tractable model for the dynamic response

of fluid-filled foam, which can be used to approximate the bound-
ary value model in the lubrication limit where the aspect ratio of
the foam is much greater than unity. We first consider a model for
squeezing flow between two parallel plates in the absence of an
open-cell foam where the lower plate is fixed and the upper plate
is moving similar to Fig. 1. The flow is assumed to be incompress-
ible and locally fully developed with no variation in the circum-
ferential direction ��-direction�. The gravitational effects are as-
sumed to be negligible. Since the flow is assumed to be dominated
by viscous forces, inertial effects can also be neglected. The fol-
lowing velocity profiles are assumed:

Vr = Vr�r,z�, Vz = Vz�z�, V� = 0 �43�

where Vr, Vz, and V� are the velocity components in the radial �r�,
axial �z�, and circumferential ��� directions, respectively. Cou-
pling the equation of continuity with the full Navier–Stokes equa-
tions of motion, this problem is readily solved. The equation of
continuity and the Navier–Stokes equations of motion in the radial
and axial directions reduce to

1

r

��rVr�
�r

+
�Vz

�z
= 0 �44�


� �

�r

1

r

�

�r
�rVr� +

�2Vr

�z2 � −
�P

�r
= 0 �r-direction� �45�


�1

r

�

�r
r
�Vz

�r
+

�2Vz

�z2 � −
�P

�z
= 0 �z-direction� �46�

where P is the local pressure within the fluid. To solve Eqs.
�44�–�46�, we initially impose a lubrication approximation in
which the square of the ratio of the characteristic dimension in the
radial flow direction �R� to that in the axial compression direction
�h� is assumed to be much greater than unity, �R /h�2�1. The
resulting equations of motion are given as


� �2Vr

�z2 � −
�P

�r
= 0 �r-direction� �47�

�P

�z
= 0 �z-direction� �48�

The corresponding boundary conditions are

	Vr	z=h = 0, � �Vr

�z
�

z=h/2
= 0, 	Vz	z=0 = 0, 	Vz	z=h = ḣ ,

�49�

	P	r=R = Pa

where R is the radius of the plates, h is given as the current
distance between the bottom plate and the top plate, Pa is the
atmospheric pressure on the free surface, and the magnitude of the

velocity of the top plate is given by 	ḣ	, where ḣ is the time rate of
change of the distance between the two plates. Solving Eqs. �47�
and �48� gives the pressure profile as

P − Pa =
3
ḣ

h3 �r2 − R2� �50�

The pressure distribution is found to be independent of the z- and
�-directions. We propose that the pressure field given by Eq. �50�
for squeezing, viscous flow is similar to the pressure field for
squeezing flow in a low-density foam. Therefore, in the lubrica-
tion limit, the pressure field for an incompressible, viscous New-
tonian flow through a low-density foam is assumed to be indepen-
dent of the z- and �-directions.

3.6 Stress-Strain Response in the Lubrication Limit. The
model of viscous squeezing flow between two parallel plates de-

Fig. 3 The fraction of the flux into the linear-elastic regime „�…
as a function of strain in the bimodal model

041015-6 / Vol. 75, JULY 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



scribed above does not accurately describe the flow field for axial
compression of a low-density, reticulated foam filled with a New-
tonian fluid because of the nonlinear behavior of the foam under
deformation; however, we assume that the pressure field of the
parallel plate model is representative of that found in a lubrication
model of a fluid-filled foam, such that the pressure field is inde-
pendent of the z- and �-directions.

Using this assumption, we extend the model presented by Daw-
son et al. �7� for reticulated foam under compressive strain. We
consider the case of axial compression of a cylindrical foam speci-
men where the characteristic radius is much greater than the char-
acteristic height. The initial radius and height of the specimen are
taken to be R and h0. As the foam undergoes compression, the
radius of the specimen remains unchanged while the instantaneous
height is given as h�t�. Compression occurs between two plates
where the lower plate is assumed to be fixed and the magnitude of

the velocity of the upper plate is 	ḣ	, where ḣ is the time rate of
change of the height of the foam, as shown in Figs. 1 and 2. This
analysis considers both the response at strains less than the elastic
buckling strain and the response at strains greater than the elastic
buckling strain but less than the densified strain. We first consider
the single regime problem with strain less than the elastic buck-
ling strain. Following the same methodology as used in Eqs.
�12�–�14�, the average radial velocity of the fluid, Ve, and the local
pressure, P, in the elastic regime can be determined. As before,
neglecting inertial effects, a force balance can be used to find an
equivalent uniform stress distribution � f, applied to the top com-
pression plate by integrating the pressure field given in Eq. �14�
over the radius giving

� f =
− 
ḣR2

8
hke
, 0 	 � 	 �

el
* �51�

For strains beyond the elastic buckling strain but less than the
densified strain, the model is taken to be a two-regime model, as
shown in Fig. 2. Based on the previous assumptions regarding no
axial variations in the pressure field, the pressure drop from the
any radius r to the outer radius R is assumed to be the same in
both the elastic region and the densified region. Coupling this
relation between the pressure drops in each region with Eq. �13�
gives

Ve

k
el
* =

Vd

kd
, �

el
* 	 � 	 �d �52�

where Vd is the velocity of the fluid at any radius r in the densified
region. Using Eq. �52�, mass conservation about a cylindrical vol-
ume at any given r gives

Ve =
− ḣk

el
*r

2h
��
el
*k

el
* + �dkd�

, �
el
* 	 � 	 �d �53�

Coupling Darcy’s law with Eq. �53� gives the pressure gradient
across the specimen �P /�r for viscous Newtonian flow �14� as
follows:

�P

�r
=


ḣr

2h
��
el
*k

el
* + �dkd�

, �
el
* 	 � 	 �d �54�

Integrating Eq. �54� and applying the atmospheric pressure bound-
ary condition at the free surface give

P − Pa =

ḣ

4h
��
el
*k

el
* + �dkd�

�r2 − R2�, �
el
* 	 � 	 �d �55�

As before, neglecting inertial effects, a force balance can be
used to find an equivalent uniform stress distribution � f, applied
to the top compression plate by integrating the pressure field over
the radius giving

� f�R2 =

0

R

	�P − Pa�	h2�rdr, �
el
* 	 � 	 �d �56a�

� f =
− 
ḣR2

8h
��
el
*k

el
* + �dkd�

, �
el
* 	 � 	 �d �56b�

3.7 Convergence of the Boundary Value Model to the
Lubrication Model. In this analysis, we consider the convergence
of the boundary value model to the lubrication model in the limit
of large R /h. A parametric study is used to compare the model
given by Eqs. �41� and �42� for varying ratios of R /h to the lubri-
cation model given by Eqs. �51�, �56a�, and �56b�. The models can
be readily compared if each model is rewritten in the following
form:

� f = − C1�
ḣR2

hke
�, 0 	 � 	 �

el
* �57�

� f = − C1�
ḣR2

hk
el
* �, �

el
* 	 � 	 �d �58�

where C1 is the dimensionless coefficient corresponding to the
numerically evaluated portion of each model, including the em-
pirically derived coefficient C, which will be determined in Sec. 4.
For strains less than the elastic buckling strain, the coefficient C1
for the model presented in this paper is independent of the aspect
ratio of the specimen. Therefore, for strains less than the elastic
buckling strain, the model presented in this analysis is identical to
that presented in the lubrication analysis for all aspect ratios of the
foam, so there is no difference in the coefficients C1, for the
lubrication and boundary value models in this regime. However,
for strains less than the densified strain but greater than the elastic
buckling strain, the coefficient C1 for the model presented in this
paper is a function of the aspect ratio of the foam and the strain
while that for the lubrication model is only a function of strain.
Therefore, the convergence of this bimodal model toward the lu-
brication model with increasing aspect ratio is presented for three
different strains in Table 1. To determine the coefficient C1 for
both the bimodal model presented in this analysis and the lubri-
cation model, the necessary parameters are numerically evaluated
based on the data presented in this analysis. The permeability of
the foam at the densified strain is taken to be 20% of that of the
foam at the elastic buckling strain, kd=0.20k

el
*, the elastic buckling

strain is taken to be �
el
* =0.05, the densified strain is taken to be

�d=0.60, and the porosity is taken to be 
=0.97 �after Dawson et
al. �7��.

4 Experiments

4.1 Materials. Specimens of open-cell, flexible, polyester-
based polyurethane foams �New Dimension Industries, Moon-
achie, NJ�, with nominal cell diameters of 175 
m, 210 
m, and

Table 1 Table of coefficients for the bimodal model as a func-
tion of the aspect ratio of the foam and for the lubrication
model, corresponding to Eqs. „57… and „58….

R /h C1 ��=0.05� C1 ��=0.30� C1 ��=0.60�

1
2

0.031 0.111 0.827
1 0.057 0.127 0.501
2 0.069 0.132 0.404
4 0.072 0.133 0.378
8 0.073 0.133 0.371

16 0.074 0.133 0.369
32 0.074 0.133 0.368

Lubrication 0.076 0.137 0.380
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235 
m based on manufacturers’ specifications �corresponding to
grades of 90 ppi, 80 ppi, and 70 ppi, respectively, were used in
the tests. The densities of the foams ranged from
0.0318 g /cm3 to 0.0322 g /cm3. Based on the manufacturer’s
value of the density of the solid polyurethane ��s=1.078 g /cm3�
the relative density of the foams was taken to be �

0
* /�s
0.03.

Using Eq. �4�, the corresponding fully densified strain is deter-
mined to be �D=0.958. The foam was cut into uniform cylindrical
specimens with diameter and height, D=25.4 mm and h
=12.8 mm, respectively. The dimensions of each sample were
measured using a digital caliper accurate to within 0.01 mm. The
Newtonian fluid used in these experiments is glycerol where the
density and viscosity are measured to be �=1260 kg /m3 and 

=1.1 Pa /s at 23°C.

4.2 Experimental Procedure. Prior to testing, each sample
was saturated with glycerol. Since the viscosity of glycerol is a
strong function of temperature, it was heated to 40°C before satu-
ration to aid in the saturation process. Samples were compressed
by machine, submerged in glycerol, and uncompressed at
1 mm /s. Hager and Craig �17� demonstrated that the indentation
force deflection loss �a measure of the load bearing capability of
flexible polyurethane foam� of polyurethane foam compressed to
0.75 strain for a short duration of time is almost completely re-
coverable. Therefore, a compressive strain of 0.75 was selected
for saturating the sample to minimize the microstructural damage
caused by the filling process. After saturation, the fluid-filled foam
was brought to a steady temperature of 23°C and allowed to
recover. Based on the data for the recovery of low-density poly-
urethane foam after 0.75 compression presented by Hager and
Craig �17�, a recovery time of 2 h was selected.

The compressive stress-strain response of each glycerol-filled
specimen was measured with the rise direction of the foam paral-
lel to the direction of loading, from 0 to 0.60 strain over a range of
strain rates from �̇=2.5�10−3 s−1 to 101 s−1. For strain rates of
�̇=1 s−1 or less, a texture analyzer �TA XT Plus, Stable Microsys-
tems, Hamilton, MA� was used at a constant strain rate; for strain
rates greater than �̇=1 s−1, an Instron testing machine �Instron
Model 1321, Instron Corp., Canton, MA� was used at constant
velocity. During testing, the temperature was maintained at
23.0�0.1°C to ensure that the glycerol retains a constant viscos-
ity. Since the flow is assumed to be instantaneously fully devel-
oped, the model presented in this paper is applicable to both con-
stant velocity and constant strain rate loading.

4.3 Experimental Results. A typical plot of the stress-strain
response of the 90 ppi foam filled with glycerol loaded at a con-
stant strain rate of �̇=0.01 s−1 is shown in Fig. 4. This strain rate
is assumed to most accurately represent quasistatic loading where
the loading is slow enough that the fluid is not expected to sig-
nificantly contribute to the response of the specimen yet fast
enough that viscoelastic effects in the foam are negligible. Using
Fig. 4, the parameters and constants governing the response of the
foam structure, given by Eqs. �1�–�5�, can be determined. A de-
tailed discussion of the microstructural behavior of open-cell foam
under compressive loading in the direction of the rise direction of
the foam is given by Gong and Kyriakides �18�. They discussed
the complex local and global buckling behavior of low-density,
open-cell foam. We consider a simplified model for the elastic
buckling strain �

el
*, taken to be the average value of the strain at

which the behavior of the foam begins to deviate from the linear-
elastic regime and the strain corresponding to the peak stress prior
to the plateau region, as shown in Fig. 4. The elastic buckling
stress �

el
* is taken to be the stress at the elastic buckling strain �

el
*.

As previously discussed, �
p
* corresponds to the strain at which the

stress at the end of the plateau region is equal to the elastic buck-
ling stress, as shown in Fig. 4. The values for the elastic buckling
strain �

el
*, the strain at which the stress at the end of the plateau

stress is equal to the elastic buckling stress, and the corresponding

constant are provided for grades of 70 ppi, 80 ppi, and 90 ppi
foams in Table 2. The final unknown parameter in the model for
the response of the foam structure given by Eqs. �1�–�5� is the
effective modulus. The effective modulus of the foam is found to
depend strongly on the strain rate due to viscoelastic effects in the
quasistatic loading regime and microinertial effects and localiza-
tion phenomenon in the high rate loading regime. The effective
modulus used in Eq. �1� for each grade of foam is found to be well
approximated by E*=X ln��̇ / �̇0�+Y over the strain rates presented
in this analysis where �̇ is taken to be �̇=1 s−1 and the constants X
and Y are provided in Table 2. The elastic buckling strains corre-
spond well with previous literature on low-density foams �8�. To
plot the fluid model, the permeabilities at the elastic buckling
strain and at the densified strain are required. These values are
obtained using the equations for the local permeability and the
corresponding intrinsic permeability at zero strain k0. It has been
observed that large strain compression causes microstructural
damage to low-density foam, altering the permeability at zero
strain �19�. Therefore, the permeability at zero strain for each
specimen was measured after the specimens were subjected to the
compressive filling technique used for saturating the foam with
glycerol. The permeability was measured using the technique
given by Dawson et al. �7�. Table 3 provides the measured per-
meability at zero strain and the corresponding permeabilities uti-
lized in modeling the stress-strain response.

A typical plot of the stress-strain response for the 70 ppi foam
filled with glycerol loaded at a constant strain rate of �̇=1.0 s−1 is
given in Fig. 5. The actual response of the fluid-filled foam is
plotted along with the model for the total contribution to the
stress-strain response, which results from the combination of the
solid contribution given by Eqs. �1�–�3� and the fluid contribution
given by Eqs. �41� and �42�. The solid and fluid contributions are
also given separately to demonstrate their relative contributions.

To fit the constant C given in Eqs. �41� and �42�, a measure of

Fig. 4 Stress-strain response of the 90 ppi foam under a qua-
sistatic load rate of �̇=1Ã10−2 s−1. „i… Strain corresponding to
deviation from linear-elastic regime. „ii… Strain corresponding
to peak stress before the plateau region.

Table 2 Static parameters and constants. The elastic buckling
strain �

el
* , the strain at which the stress begins to exceed the

plateau stress �
p
*, and the constants X, Y, and D „Eq. „5……

Foam grade
�ppi� �

el
* �

p
*

X
�Pa�

Y
�Pa� D

70 0.058 0.55 1.07E+04 1.35E+05 2.3
80 0.049 0.54 1.28E+04 1.70E+05 2.3
90 0.057 0.55 1.09E+04 1.42E+05 2.3
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the goodness of fit is established. The measure for the goodness of
fit R2 is taken to be the sum of the squares of the difference
between the experimental values and the average experimental
value divided by the sum of the squares of the difference between
the experimental values and the predicted values. This measure of
the goodness of fit was maximized, over the sample of experimen-
tal data discussed in the following sections, to establish the em-
pirical constant.

In Fig. 6, we show the stress response of the 70 ppi foam filled
with glycerol at �=0.60 strain, corresponding to an aspect ratio of
2.5, plotted against the strain rate. Each data point is the average

of three experiments with error bars corresponding to 1 standard
deviation. The error bars for most data points are not apparent
since they are smaller than the size of the data points. The fluid
and solid contributions of the stress, given by Eqs. �2�, �3�, and
�42�, respectively, are plotted separately showing their relative
contributions. In Fig. 7, we show the stress at �=0.30 strain and
�=0.60 strain, corresponding to aspect ratios of 1.4 and 2.5, re-
spectively, for all three grades of reticulated foam filled with glyc-
erol plotted against the strain rate. Each data point is again the
average of three experiments with error bars corresponding to 1
standard deviation. The total contribution to the stress-strain re-
sponse, which results from the combination of the solid contribu-
tion given by Eqs. �2� and �3� and the fluid contribution given by
Eq. �42�, is also shown in Fig. 7.

All of the data used to generate the plots in Fig. 7 are used to
determine the empirical constant C. Using each data point along
the 0.3 and 0.6 strain curves, which consist of the average of three
experimental points, for all three foam grades, the empirical con-
stant is determined to be C=0.59. Based on the data in Fig. 7, the
R2 values for each grade of foam at both �=0.30 and �=0.60 are
given in Table 4; it is clear that the model describes the data well
up to the densified strain for a range of foam grades and strain
rates, as shown in Fig. 7. The empirical constant C, which prima-
rily accounts for the tortuous and anisotropic microstructure of the
foam, is independent of all of the parameters considered in this
analysis. Figure 7 supports this initial assumption, demonstrating
that C is independent of the cell size of low-density foam, the
aspect ratio of the foam, the strain imposed on the foam, and the
strain rate applied to the foam. Additional experimental studies,
not presented here, that vary the aspect ratio of the foam also
support this proposal. Using C=0.59, the model given by Eq. �42�
accurately describes the data for fluid-filled foam samples over
several orders of magnitude of strain rate with an aspect ratio of
approximately 10 at �=0.60.

5 Discussion
A boundary value model for the contribution of viscous New-

tonian fluid flow to the stress-strain response of a fluid-filled foam
under dynamic compression is given by Eqs. �41� and �42�. The
model governing viscous flow in the bimodal regime of the foam
is given in the form of an infinite series of Bessel functions. As
expected, this solution converges rapidly with an increasing num-
ber of terms, such that the boundary value model is readily evalu-
ated numerically with only the first few terms. Based on the per-
meability studies of Dawson et al. �7�, the models presented in
this analysis are taken to be applicable for all grades of low-
density foam and independent of whether the orientation of the
rise direction of the foam is perpendicular or parallel to the direc-
tion of fluid flow. As previously discussed, the models in this
analysis assume that the flow is dominated by viscous forces,
which is shown to be the case for nearly all achievable strain
rates. The boundary value model further assumes an instantaneous
change in the velocity field of the foam at the elastic buckling
strain �

el
*, which is the strain at which the model transitions from

the single regime to the bimodal regime. The transition behavior
between these two regimes is neglected, which results in a small
discontinuity in the stress response of the boundary value model.
However, as the aspect ratio of the foam R /h is increased, the
effect of the assumed velocity field of the foam becomes negli-
gible, and the boundary value model rapidly approaches a con-
tinuous solution. In addition, with increasing R /h, the bimodal
model becomes independent of the location of the densified bands
of the foam.

The boundary value model presented in this analysis is found to
describe the experimental results presented in this paper for foam
grades varying from 70 ppi to 90 ppi and strain rates varying
from �̇=2.5�10−3 s−1 to 101 s−1 well. All of the strain rates in
these experiments satisfy the viscous flow requirements of the

Table 3 Permeability data for precompressed foam. The per-
meability at zero strain k0, for each grade of foam, is given after
being subjected to the saturation process. The permeabilities
at the elastic buckling strain and densified strain are deter-
mined using the equations supplied in Eqs. „8…–„10…

Foam grade
�ppi�

k0
�1�10−9 m2�

k
el
*

�1�10−9 m2�
kd

�1�10−9 m2�

70 5.82 5.45 1.28
80 5.21 4.93 1.04
90 4.68 4.39 0.85

Fig. 5 Stress plotted against strain for 70 ppi foam. Experi-
mental data „�…. Contribution to the stress response of fluid
model given by Eqs. „41… and „42… „---…, the solid model given by
Eqs. „1… and „3… „–·–…, and the total model „––….

Fig. 6 Stress plotted against strain rate for 70 ppi foam at �
=0.60. Experimental data „�…, the contribution to the stress re-
sponse of fluid model given by Eqs. „41… and „42… „—… and solid
model given by Eqs. „1… and „3… „---….
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models with Re�1. The maximum Reynolds number in the ex-
periments was found to be Re=0.017, which corresponds to strain
rate of �̇=10 s−1 in a 70 ppi foam with an average cell diameter of
235 
m.

Figure 5 shows the individual contributions of both the solid
model and the boundary value fluid model to the model of the
total stress-strain response of the 70 ppi fluid-filled foam. The
total model fits the data well over the entire range of interest,
slightly overestimating the response at low strains. The previously
discussed discontinuity in the models near the buckling strain is
evident but shown to be negligible. Furthermore, Figs. 6 and 7
demonstrate that the boundary value model is representative of the
actual response of the fluid-filled foam at both �=0.30 and �
=0.60 for a range of foam grades and strain rates. The standard
deviations of nearly all of the data are observed to be very small,
on the order of the size of the data point. Overall, the goodness of
fit measure given in Table 4 demonstrates that the boundary value
model fits the data well for all grades of foam at both �=0.30 and
�=0.60 for the range of strain rates considered. The boundary
value model also fits the data well over all strains less than the
densified strain, but the strains of �=0.30 and �=0.60 were se-
lected as representative strains. The empirical constant C=0.59
primarily accounts for the tortuous and anisotropic microstructure
of the foam and is found to be similar to the efficiency factor of
2 /3 found by Glicksman �16� in his study of the thermal conduc-
tivity of porous media. Furthermore, the empirical constant is pro-
posed to be independent of all of the parameters considered in this
analysis. Figure 7 supports this proposal demonstrating that C is
independent of the cell size of low-density foam, the aspect ratio
of the foam, the strain of the foam, and the strain rate of the foam.

While the boundary value model is readily evaluated and com-
pared with experimental results, extending it to a more advanced
study of dynamic loading of non-Newtonian fluid-filled foam is
challenging. However, this model is useful in validating the appli-
cability of the more tractable lubrication model, which assumes
the radius of the foam is much greater than the height of the foam.
The boundary value model is found to converge rapidly to within
5% of the lubrication model for aspect ratios greater than 4
�R /h�4�. The small discrepancy between the coefficient for the
lubrication model and that for the boundary value model may be
attributed to the fact that the lubrication model assumes a uniform
radial flow, neglects pressure gradients in the z-direction, and ne-
glects the flow in the z-direction; whereas the boundary value
model does not make these assumptions.

Table 1 demonstrates that as R /h is increased, the numerical
coefficients at �=0.05 and �=0.30 strain increase asymptotically
while the coefficient at �=0.60 strain decreases asymptotically. At
any given strain, the coefficient C1 is governed primarily by the
following two factors: the aspect ratio of the foam sample and the
distance between the collapsing band and the compression plate.
For all strains as R /h is decreased, the dependence of the stress,
given by Eq. �58�, on R /h also decreases. In the limit of very
small R /h, the stress contribution of the fluid becomes completely
independent of R /h.

At �=0.60 strain, the stress is independent of the distance be-
tween the collapsing band and the compression plate �1 /2he�
since the collapsing band is effectively always at the interface

Table 4 The measure for the goodness of fit of the boundary
value model at 0.30 and 0.60 strains for each grade of foam

Foam grade
�ppi�

R2

0.30 strain 0.60 strain

70 0.97 0.99
80 0.99 0.99
90 0.95 0.99

Fig. 7 „a… Stress plotted against strain rate for 70 ppi foam.
Experimental data at 0.60 strain „�…, and 0.30 strain „�…, re-
spectively. Model given by combining Eqs. „2… and „3… with Eq.
„42… at �=0.30 „—… and �=0.60 „---…. „b… Stress plotted against
strain rate for 80 ppi foam. Experimental data at 0.60 strain „�…,
and 0.30 strain „�…, respectively. Model given by combining
Eqs. „2… and „3… with Eq. „42… at �=0.30 „—… and �=0.60 „---…. „c…
Stress plotted against strain rate for 90 ppi foam. Experimental
data at 0.60 strain „�…, and 0.30 strain „�…, respectively. Model
given by combining Eqs. „2… and „3… with Eq. „42… at �=0.30 „—…

and �=0.60 „---….
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between the compression plate and the foam. Therefore, it is ex-
pected that as R /h decreases, the coefficient C1 would increase
proportionally, such that the stress is independent of R /h in the
limit of very small R /h. However, at 0.05 and 0.30 strains, the
distance between the collapsing band and the compression plate
�1 /2he� is also an important factor, which strongly influences the
coefficient C1. As R /h is decreased, the relative distance between
the fluid in the collapsing band and the compression plate �1 /2he�
to that of the fluid in the collapsing band and the free surface
��R� increases; therefore, it is expected that the overall stress on
the compression plate would decrease. For lower strains, this ef-
fect is more pronounced since the band is effectively farther from
the compression plate, explaining the phenomenon observed in
Table 1.

In the limit that R /h�1, the effect of the distance between the
collapsing bands and the compression plate is found to be incon-
sequential for all strains, and the stress becomes independent of
the vertical location of the collapsing bands. Table 1 demonstrates
that the model presented in this analysis becomes approximately
independent of the aspect ratio of the foam for R /h�4. As ex-
pected, this indicates that the lubrication model provides a good
approximation to the flow for a large range of R /h values. Over-
all, the convergence of the more comprehensive boundary value
model toward the lubrication model strongly supports the lubrica-
tion analysis. This is an important finding since the lubrication
model is readily extended to more complex analyses, such as the
study of the stress-strain response and energy absorption capabili-
ties of a foam filled with a rate-dependent non-Newtonian fluid
under dynamic loading.

6 Conclusion
In this paper, a comprehensive boundary value model for the

contribution of viscous Newtonian fluid flow to the stress-strain
response of a fluid-filled, elastomeric foam under dynamic com-
pression is presented. Experimental results strongly support this
model for a variety of foam grades over several orders of magni-
tude of strain rate. A simple explicit analytic solution based on a
lubrication approximation is also presented. The robust boundary
value model is found to converge rapidly toward the lubrication
model as the aspect ratio of the foam is increased. This validation
of the lubrication model is important since it is more readily ex-
tended to more complex analyses, such as the dynamic response
of foam filled with a non-Newtonian fluid. Furthermore, using a
lubrication model, both the Newtonian and non-Newtonian mod-
els can be extended to determine the energy absorption capabili-
ties of a fluid-filled foam under dynamic loading, which is critical
to the development of composite armor capable of absorbing en-
ergy and impeding shock waves.
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Appendix
The velocity profiles in the absence of foam for the analysis in

Sec. 3.5 are given as

Vr�r,z� =
3Ḣr
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�� z

H
�2
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z

H
� �A1�

Vz�r,z� = 6Ḣ�1
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Almost Sure Stability of a Moving
Elastic Band
In this paper, the stochastic stability problem of a moving elastic band subjected to action
in-plane acting forces is investigated. Each force consists of a constant part and a
time-dependent zero mean stochastic function. By using the direct Liapunov functional
method, almost sure asymptotic stability conditions are obtained as the function of sto-
chastic process variance, damping coefficient, and geometric and physical parameters of
the band. Numerical calculations are performed for infinite mode and compared with
known results. Almost sure stability regions are shown for infinite and first mode the
two-dimensional density probability function, and for higher modes when the edge load
Gaussian or harmonic process is known. �DOI: 10.1115/1.2839905�

Keywords: random loading, Liapunov functional, almost sure stability, Gaussian and
harmonic process

1 Introduction

A study of the dynamical behavior of continuous moving bands
is of practical importance in the design of band saws, conveyer
systems, tape recorders, belt drives, etc. As Soler �1� pointed out,
the presence of in-plane loads couples the lateral and torsional
motions in the system differential equations and in the boundary
conditions.

Wang �2� investigated the dynamic stability of the coupled
transverse and longitudinal motions of high speed axially moving
bands. A nonlinear model with end curvatures is developed and
analyzed.

Torsional oscillations and stability conditions of moving bands
subjected to harmonic tension fluctuation are studied by Ariarat-
nam and Asokanthan �3�. Later, the same authors �4� investigated
flexural instabilities in moving band under random tension fluc-
tuation. Explicit stability conditions based on the mean square
amplitudes are established by employing a stochastic averaging
procedure.

The dynamic stability of a coupled lateral and torsional motions
of the moving elastic band subjected to random parametric exci-
tations is investigated by Kozin and Milstead �5�. Galerkin’s
method is used to reduce the equations of motions in nth mode,
which leads to restrictive results because in each equation three
terms disappear.

Uniform stochastic stability of a moving elastic band under
time- and space-dependent loadings is studied by Tylikowski �6�.

In this paper, we study the almost sure asymptotic stability of a
moving band subjected to zero mean in-plane loading by means
Liapunov functional method. Stability regions are compared with
ones obtained by Kozin and Milstead �5�.

2 Problem Formulation
We will start from the Kozin-Milstead �5� nondimensional

equations of motion �Eqs. 10�a� and 10�b��, which can be written
as
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where u, � are dimensionless lateral displacement and rotation of

band about x axis, �̄ the damping coefficient, � the band mass
density, b, h, L the band thickness, band width, and length be-
tween supports, respectively, C the band axial velocity, E, G
Young and shear modulus, � Poison ratio, To, T�t� the constant
and time-dependent tension in the band, and Po, P�t� the constant
and time-dependent edge load at the support. The time varying
forces T�t� and P�t� are assumed to be zero mean stochastic pro-
cesses.

The band is assumed to be simply supported and boundary
conditions are

�x = 0

x = 1
� u�t,x� = ��t,x� =

�2u

�x2 �t,x� =
�2�

�x2 �t,x� = 0 �4�

The purpose of the present paper is the investigation of almost
sure asymptotic stability of the moving band subjected to stochas-
tic time-dependent loads. To estimate perturbated solutions, it is
necessary to introduce a measure of distance 	 · 	 of solutions of
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Eqs. �1� and �2� with nontrivial initial conditions and the trivial
one. Following Kozin �7�, the equilibrium state of Eqs. �1� and �2�
is said to be almost sure stochastically stable, if

P
lim
t→�

	w�. ,t�	 = 0� = 1 �5�

where w=col�u ,��, matrix column.

3 Stability Analyses
Applying the Liapunov method, we can construct the functional

as is shown in Ref. �8�. Thus, let us write Eqs. �1� and �2� in the
formal form Lw=0, where w=col�u ,��, and introduce the linear
R operator, which is a formal derivative of the operator L with
respect to � /�t.

Integrating the scalar product of the vectors Lw Rw on rect-
angular C= �x :0	x	1�
 �� :0	�	 t� with respect to Eqs. �1�
and �2�, it is clear

�
0

1�
0

t

Lw Rw dzd� = 0 �6�

After applying partial integration to Eq. �6�, the sum of two
integrals may be obtained. In the first, integration is only on the
spatial domain, and it is chosen to be the Liapunov functional:
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where �=�u /�t, �=�� /�t.
Since it is evident

�V�0
t −�

0

t
dV

dt
dt = 0 �8�

then the second integral in Eq. �6� is a time derivative of the
functional �7� along with Eqs. �1� and �2�:
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Functional V will be a Liapunov functional if it is a positive
definite that will be fulfilled if �
� and ��1. From relations
�3�, it is evident that ��1, so we have ����1. This condition
can be extended by using well known Steklov’s inequality:
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and positive definite conditions become:
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 0 �11a�

�2�2 + 1 − �2 
 0 �11b�

4 Almost-Sure Stability
Let a scalar function ��t� be defined as

1

V

dV

dt
� ��t� �12�

As a maximum point, which is a particular case of the stationary
point, we may write

��V̇ − �V� = 0 �13�

which can be written in the form
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By putting L1=L2=0, we can eliminate � and � from L3 and L4.
Then they have the form
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According to the boundary condition �10�, we shall choose the
trial functions in the form
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n=1

�

�n�t�sin �nx

where �n=n�, n is a natural number. By using Galerkin’s method,
from Eq. �16�, we obtain an infinite system of algebraic equations,
which has a nontrivial solution if its determinant is equal to zero,
and one can find unknown function �. Unfortunately, even in the
case n=1,2, as is proposed by Ariaratnam and Asokanthan �3�, we
get an eighth order algebraic equation for �. So, we are enforced
to follow the Kozin-Milstead �5� procedure, and by taking only
the single �nth� mode from Eq. �16�:

��� + 2��2kon − k1n�t��Un − k2n�t��n = 0
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− k2n�t�Un + ��� + 2��2�kon + k3n� − k1n�t���n = 0
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2

Hence, from Eq. �18�,
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2 k1n
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− 2� �20�
By solving the differential inequality �12�, and estimation of the

functional, we can conclude that the trivial solution of Eqs. �1�
and �2�, when the processes g�t� and f�t� are ergodic and station-
ary, is almost sure asymptotically stable if

E
�n�t�� � 0 �21�

where E denotes the operator of the mathematical expectation.

5 Numerical Results and Discussion
From Eqs. �19�–�21�, it may be seen that almost sure stability

condition is independent of band velocity, which is given throw
parameter �. It is also noticed in Ref. �5�, but based on numerical
results, while for band velocities exceeding torsional wave propa-
gation ��
1�, explanation is insufficiently clear.

For ��1, �C�CT�, relation �11b� is satisfied, and parameters
�, � have to obey to relation �11a�. If �
1, �C
CT�, then �2

−1 must be less than �2�2, and parameter 1−�2�2��2�1. We
choose parameters � and � from the region under the solid
straight line shown in Fig. 1.

First, we consider infinite mode �n→��, and by using Schwartz
inequality we get stability regions, which are compared with
Kozin-Milstead �5� results. Second, both results are improved

when we know the probability density function for the processes.
Finally, we analyze cases when n is a finite number, especially the
first mode �n=1�.

By putting in Eq. �21� that n tends to infinity, it takes the form

E��g2�t� + g�t��fo + f��t��� +
1

3
�fo + f��t���2� − 2�� � 0

�22�
and by applying Schwartz inequality, with respect to relations �3�,
we get
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�23�

where ro is the correlation coefficient between processes T�t� and
P�t� and ��T /To�, are ��P /To� are their variances.

Relation �23� gives us the possibility to show almost sure-
stability regions. As we see, it represents simple quadratic func-
tion with respect to process variances, as well as geometric and
physical parameters of the band. In Fig. 2, with stability regions

Fig. 1 Choosing moving band parameters

Fig. 2 Moving elastic band–infinite mode �„P /To… versus
�„T /To…: „—… after relation „23…; „---… Ref. †5‡
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obtained by relation �23� are given by a solid line, and with
dashed line results obtained in Ref. �5�. It is evident that relation
�23� gives significally larger stability regions. Due to its simplic-
ity, we can obtain completely identical Figs. 7 and 8 in Ref. �5�.

Our next intention is focused relation �22� on processes g�t� and
f�t� have normal distribution. Two-dimensional probability den-
sity function is given by the Gaussian form:

p�g, f� =
1

2��g� f
�1 − r2

exp
−
1

2�1 − r2�� g2

�g
2 − 2r

gf

�g� f
+

f2

� f
2��
�24�

where �g, � f are variances, and r is the correlation coefficient.
Numerical calculation is performed by using Gauss-Hermite
quadratures, as is shown in Ref. �9�.

In Fig. 3, stability regions as functions of correlation coefficient
are given by solid line, and for comparison, stability regions ob-
tained by Schwartz inequality with a dashed line. It may be seen
that our numerical difficulties related to solving an algebraic-
integral equation are awarded by great enlarging stability regions.

Calculating of almost sure-stability regions for finite modes are
performed by using relations �20� and �21�. In Fig. 4, stability
regions are given for the first mode �n=1� and various values of
parameter �. It is evident that by increasing the tensile force in the
band, the stability region increases. As in upper case, knowing the
two-dimensional probability density function enlarged almost
sure-stability regions.

For higher modes �n=2,3 ,4�, the stability regions are calcu-
lated when g�t�=0 �there is no fluctuation in the tensile force� and
are shown as a function of variance � f and damping coefficient �
in Fig. 5. The boundaries of the almost sure stability for Gaussian
process are given by a solid line, and for harmonic one by dashed
line. From Figs. 3–5, it has been seen that for the Gaussian pro-
cess with increasing mode number, stability regions decrease to
limit value, which can be read on the ordinate axis in Fig. 3.
Numerical calculation for the harmonic process is performed by
using Gauss–Chebyshev quadrature, as is shown in Ref. �10�.

6 Conclusions
Almost sure-stability problem of a moving elastic band, where

coupling of lateral and torsional motions is caused by in-plane
acting forces, is investigated. Stability conditions are obtained by
the direct Liapunov functional method, and the choice of param-
eters � and � is based on the positive definite condition of the
Liapunov functional. By using the Schwartz inequality for the

infinite mode the Kozin-Milstead �5�, results are improved, and
the almost sure-stability condition is reduced when solving the
simple quadratic inequation, while stability regions are significally
larger. Also, it is shown that if we know the two-dimensional
probability function our results can be improved for all modes.

Stability region in plane of process variances is given as a func-
tion of correlation coefficient for infinite mode, and as functions
of parameter � for first mode. In the case when edge load process
possesses Gaussian or harmonic distribution, stability regions are
given for second, third, and fourth modes.
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Jumps Across an Outgoing
Spherical Shock Wave Front
The shock jump conditions have been used since Rankine published in 1870 and Hugo-
niot in 1889. However, these conditions, in which the geometrical effect is never included,
may not be correctly applied to material responses caused by a spherical wave front.
Here, a geometrical effect on jumps in radial particle velocity and radial stress across an
outgoing spherical wave front is examined. Two types of jump equations are derived from
the conservation laws of mass and momentum. The first equations of Rankine–Hugoniot
(RH) type show that the geometrical effect may be neglected at distances of movement of
the rear of the wave front that are more than ten times as long as the effective wave front
thickness. Furthermore, using four conditions required to satisfy the RH jump conditions,
which are contained in the RH type equations, a method is developed to judge the
applicability of the RH jump conditions to the jumps. The second type equations for
spherical wave fronts of general form are obtained by expressing a volumetric strain
wave � in the wave front by more general wave forms. In the neighborhood of the center
of the wave front, for ��0.09, radial particle velocity in the jump in any materials is
inversely proportional to the square of a dimensionless distance from the center to the
rear, and for ��0.04, radial stress in the jump in some viscous fluids and solids is
inversely proportional to the distance. In conclusion, an outgoing spherical wave front
attenuates greatly near the center due to the geometrical effect as well as rarefaction
waves overtaking from behind, while the geometrical effect is negligible at the specified
positions that are distant from the center. �DOI: 10.1115/1.2912942�

1 Introduction
Rankine �1� published his dissertation on a plane shock wave in

1870. Hugoniot’s work �2� was published posthumously in 1889.
The discontinuous shock jump equations they proposed have be-
come known as the Rankine–Hugoniot �RH� jump conditions.
Davison �3� showed that the RH jump conditions were applicable
to the jumps across a steady plane wave of finite rise time.

In plate impact experiments, several authors �4–7� observed
unsteady wave fronts decreasing in their amplitudes and increas-
ing in their thicknesses with propagation due to the smearing ef-
fect that is more predominant over the steepening effect. Sano �8�
derived the equations of two different types for jumps across an
unsteady plane wave front, and qualitatively examined the effect
of unsteadiness on the jumps. The first equations of RH type for
the wave front of finite rise time, which rear moved with a con-
stant velocity, showed that the jump in particle velocity depended
on the strain rate, and the jump in stress further on the strain
acceleration. The second type equations are the jump equations
for plane wave fronts �of infinitesimal rise time� of general form
that are obtained by expressing a strain wave in the wave front by
more general wave forms. These equations showed that both
jumps implicitly depended further on the change in the strain
wave form with time. Sano and Miyamoto �9� evaluated the in-
fluences of the unsteadiness and the time variation in the velocity
of the rear of the wave front on both jumps using the strain wave
parameters that were determined by Sano �10� on the basis of
shock experiment data for a lithium fluoride �LiF� single crystal
�5� and for sandstone �6�. The influence of the unsteadiness was
considerably large for both materials. On the other hand, the in-
fluence of the time variation in the velocity was slight for the LiF
single crystal because of the thin wave front thickness, and was
appreciable for sandstone because of the much larger thickness.

Grady �11� developed a method that allowed analysis of attenu-

ating experimental wave profiles of arbitrary shape in spherically
symmetric flow. The method was applied to radial stress and par-
ticle velocity data for spherically divergent wave propagation in
Westerly granite. The resulting relations among pressure, volume,
and deviatoric stress are consistent with other available data on
Westerly granite. This fact indicates that jumps in radial particle
velocity and stress across explosion-induced spherical wave fronts
in condensed matters such as liquids, solids, and porous materials
are influenced by curvature of the wave front. This implies that if
the jump equations for a plane wave front �1,2,8,9� are applied to
calculations of the jumps across a spherical wave front, in general,
the jumps would be inaccurately predicted. However, the jump
equations for a spherical wave front are complicated and difficult
to use. Therefore, it is important to find out conditions under
which it is reasonable to ignore the geometric effects due to cur-
vature of the wave front.

In the study reported here, equations of RH type for jumps in
radial particle velocity and radial stress across an outgoing spheri-
cal wave front of finite rise time are first derived, and then re-
duced to equations that are appropriate only at distances of move-
ment of the rear of the wave front that are much longer than the
wave front thickness. For a strain wave of linear form in the wave
front, the distances at which the effect of curvature can be ne-
glected are specified. Furthermore, a method is presented to judge
whether the RH jump conditions are applicable to the jumps at
those distances. Next, jump equations for spherical wave fronts of
general form are derived, and then reduced to equations where
curvature is separated from the other factors that influence the
jumps, although the reduced equations are not applicable to large
amounts of volumetric strain. Using the reduced equations, the
effect of curvature is examined near the center of the wave front.

2 Jump Equations of RH Type

2.1 Equations. Figure 1�a� schematically shows a propaga-
tion of a volumetric strain wave ��r , t� in an outgoing spherical
wave front in the r direction, where r is the Lagrangian position
and t is time. An initial spherical wave front at time 0 has a range
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r1�0��r�r0�0� where r1�0�=0, where subscripts 0 and 1 refer to
the leading edge and the rear of the wave front, respectively. Po-
sition r=0 is the position where the wave front is created, that is,
the center of the wave front. The leading edge reaches position
r0�t� at t, and the rear is at position r1�t�=�0

t cdt, where c�t� ��0�
is the velocity of the rear. Note that the time variation c�t� can be
determined arbitrarily. The wave front thus has a range r1�t��r
�r0�t� at t. In this range, the equations of conservation of mass
and momentum are expressed �11–13� by

r2��

�t
+

��R2u�
�r

= 0 �1�

�0
�

�t
�� r

R
�2

u	 +
��

�r
= − 2�0

r2

R3�u2 +
� − ��

�
� �2�

where R�r , t� is the Eulerian position expressed by R=r+�udt,
u�r , t� is the radial particle velocity, ��r , t� is the radial stress,
�� �r , t� is the circumferential stress, ��r , t� is the material density,
and �0 is the initial density.

A coordinate system �� ,s� moving at c�t� with the rear of the
wave front is introduced �14� as

� = r − s �3a�

s =

0

t

c�t�dt �3b�

where s ��r1�t�� is the distance of movement of the rear. Figure
1�b� schematically shows the strain wave ��� ,0� in the initial
wave front, and the strain wave ��� ,s� in the wave front whose
leading edge is at position �0�s� and whose rear is at position 0,
where �0�s�=r0�t�−s. Note that �0�s� is the wave front thickness.
In Secs. 2 and 3, symbols r0, r1, and �0 denote r0�t�, r1�t�, and
�0�s�, respectively. Variables depending on � and s are related to
the variables depending on r and t as follows:

R��,s� � R�r,t�, u��,s� � u�r,t�, ���,s� � ��r,t�

���,s� � ��r,t�, ����,s� � ���r,t�, ���,s� � ��r,t�

Using � /�t=−c�t��� /��−� /�s� and � /�r=� /��, which are ob-
tained from Eqs. �3a� and �3b�, Eqs. �1� and �2� are transformed
into

��R2u�
��

= c�t�� ��r2��
��

−
��r2��

�s
	

��

��
= �0c�t�� �

��
�� r

R
�2

u	 −
�

�s
�� r

R
�2

u	
 − 2�0
r2

R3�u2 +
� − ��

�
�

The equations above are integrated from � to �0 to become

u��,s� = c�� r

R
�2

� − � r0

R
�2
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where ct�dc /dt. At �=0, Eq. �4� is a jump equation for radial particle velocity

u1 − u0 = c�� r1

R1
�2

�1 − � r0

R1
�2

�0 +

0

�0 � r

R1
�2��

�s
d�	 + �� r0

R1
�2

− 1	u0 �6�

where �1��1�s����0,s�, u1�u1�s��u�0,s�, and R1�R1�s��R�0,s�=R�r1 , t��R1�t�=r1+�ũ�r1 , t�dt. At �=0, Eq. �5� is a jump
equation for radial stress

Fig. 1 Schematic diagrams of „a… an initial strain wave �„r ,0…
with a range 0ÏrÏr0„0… at time 0 and a strain wave �„r , t… with
a range r1„t…ÏrÏr0„t… at time t in an inertial coordinate system
„r , t…; and „b… an initial strain wave �„� ,0… with a range 0Ï�
Ï�0„0… at s=0 and a strain wave �„� ,s… with a range 0Ï�
Ï�0„s… at s=s in a moving coordinate system „� ,s…, where s
†Ær1„t…‡ is the distance of movement of the rear of an outgoing
spherical wave front from t=0 to t= t. The initial volumetric
strain �0 is assumed to be constant along r.
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�1 − �0 = �0c2�� r1
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�u0 − c�0�	d� �7�

where �1��1�s����0,s�. The radial particle velocity in the
jump �the jump �u1−u0�� depends on the product of the strain
rates and the positions r in the wave front, that is, the combined
strain rates and curvatures. The radial stress in the jump �the jump
��1−�0�� depends further on the product of the strain accelera-
tions and the positions, that is, on the combined strain accelera-
tions and curvatures. Equations �6� and �7� are called jump equa-
tions of RH type for an outgoing spherical wave front. In the limit
r→	, where r1 /R1→1, r0 /R1→1, r /R1→1, r /R→1, and r0 /R
→1, they reduce to the RH type jump equations for an unsteady
plane wave front �9�.

2.2 Approximations. For an outgoing spherical wave front
that is passing through a position r �or ��, equation R�� ,s�=r
+ �ū��� / c̄�����r0−r� is obtained by substituting 
t= �r0−r� / c̄���
into R=r+ ū���
t, where c̄��� is the mean velocity of the leading
edge of the wave front between positions r and r0, and ū��� is the
mean particle velocity at � over 
t. The value of ū��� / c̄��� ap-
proximates to that of the volumetric strain at �. The error � of
approximation R�r at r in the range r1�r�r0 is between �=0 at
r=r0 and �=�1 at r=r1, that is, 0����1, where �1=1−r1 /R1.
The error �1 is expressed by �1= �ū / c̄� �0 / �s+ �ū / c̄��0�, where c̄
� c̄�0� and ū� ū�0�. The value of �1 changes from �1=1 at s=0 to
�1=0 at s→	. For example, at s=10�0, �1 is given by �1
= �ū / c̄� / �10+ �ū / c̄�� ��1 /10, indicating that the error �1 is only
about 1% for volumetric strain of 10%. If R�r and R1�s, then
Eqs. �6� and �7� reduce to
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0
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+ 2�0

0

�0 1

r
�u2 +

� − ��

�
�d� �9�

where the values �0=0 and u0=0 are assumed, and ��1−�0� is the
amplitude of the strain wave at s.

The third term on the right side of Eq. �9� may be able to be
neglected in a situation where the effect of the curvatures in the
wave front is small. This fact is demonstrated here. Using u
�c� and ���0cu, where the values �0=0, u0=0, and �0=0 are
assumed, as well as �−���� and �=1−�0 /�, the third term is
expressed as

2�0

0

�0 1

r
�u2 +

� − ��

�
�d� � 2�0c


0

�0 u

r
d� �10�

By integrating the right side of Eq. �10� after assuming u=u1�1
−� /�0�, and then using u1�c�1 in the resulting inequality,

2�0

0

�0 1

r
�u2 +

� − ��

�
�d� � 2�0c2��1 − �0�

���1 +
s

�0
�log�1 +

�0

s
� − 1


�11�

For s
10�0, the values of coefficient 2��1+s /�0�log�1+�0 /s�
−1� are smaller than a value of 10−1. Therefore, the third term can
be eliminated at the distances s where s
10�0.

2.3 Geometrical Effects. Values of the geometrical factor
�0 /s where the effect of the curvatures in the wave front on the
jumps is negligible are now specified. For the sake of simplicity,
the following linear strain wave is assumed:

� − �0 = ��1 −
�

�0
� �12�

where �0���0�s�� is the effective wave front thickness �15� and
��s� ���1�s�−�0� is the amplitude of the strain wave, where s
represents the effective distance of movement of the rear of the
wave front. The initial amplitude is expressed by ��0�=�1�0�
−�0. The symbol � denotes ��s� below. The jump equations for
the radial particle velocity and stress waves corresponding to the
linear strain wave are obtained by substituting Eq. �12� into Eqs.
�8� and �9� as follows:

u1 − u0 = c��1 − �0��1 +
1

2

��

�
�0g1 +

1

2
�0�g2
 �13�

�1 − �0 = �0c2��1 − �0��1 +
��

�
�0g31 + �0�g41

+
1

�



0

�0 �

�s� 1

r2

�

�0

r2��

�s
d�	d�
 + �0c2��1 − �0�� �0ct

c2 �
��1

2
+

1

6

��

�
�0g5 +

1

3
�0�g6
 �14�

where the dashes on the variables refer to the differentiation with
respect to s, and where the last term in the brackets of the first
term on the right side of Eq. �14� is expressed by
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Here g1 ,g2 , . . ., and g8 are expressed by

g1 = ���0/s�2 + 4��0/s� + 6�/6, g2 = �3��0/s�2 + 8��0/s� + 6�/6

g3 = g31 + g32 = ��0/s + 3�/3, g4 = g41 + g42 = �2�0/s + 3�/3

g5 = ��0/s + 2�/2, g6 = g7 = �3�0/s + 4�/4, g8 = �3�0/s + 2�/2
The jump �u1−u0� depends on g1 and g2, which are functions of
�0 /s, as well as the rates �� and �0�. The jump ��1−�0� depends on
g3 ,g4 , . . . ,g8, which are also functions of �0 /s, the rates �� and �0�,
and the accelerations �� and �0�. Values of the functions
g1 ,g2 , . . . ,g8 at �0 /s=1, 10−1, 10−2, and 10−3 are listed in Table 1.

Substitutions of Eq. �12� into Eqs. �8� and �9� where s→	 and
hence r→s, that is, into the jump equations for an unsteady plane
wave front �15�, yield

u1 − u0 = c��1 − �0��1 +
1

2
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�
�0 +

1

2
�0�� �15�

�1 − �0 = �0c2��1 − �0��1 +
��

�
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1

6
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�0

2 +
2
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�0��0 +

1

3
�0��0

+
1

3
�0�

2� + �0c2��1 − �0�� �0ct

c2 ��1

2
+

1

6

��

�
�0 +

1

3
�0�� �16�

The geometrical effect on the jump �u1−u0� is assessed by com-
paring Eq. �13� with Eq. �15�. The value of g1 decreases mono-
tonically up to a value of 1 as the value of the geometrical factor
�0 /s decreases. The same is true of the value of g2. This result
indicates that the geometrical factor intensifies the influence of
other factors such as �� and �0� on the jump �u1−u0�, and that as
the rear of the wave front proceeds, the influence decreases. On
the other hand, to assess the geometrical effect on the jump ��1
−�0�, Eqs. �14� and �16� are compared. The values of
g3 ,g4 , . . . ,g8 decrease up to a value of 1 linearly with a decrease
in the value of �0 /s, indicating that the same is true of the influ-
ence on the jump ��1−�0�. At �0 /s=1 /10, all the values of
g1 ,g2 , . . . ,g8 are near a value of 1. Therefore, the effect of the
curvatures on the jumps �u1−u0� and ��1−�0� may be neglected
at the distances s where s
10�0.

Sano and Miyamoto �9� obtained values of dimensionless quan-
tity ����0ct /c2� in Eq. �16� for two materials using data that were
measured at their impact surfaces in plate impact experiments.
The values are −0.004 ��0=0.32�10−3 m, c=7000 m /s, and ct
=−0.6�109 m /s2� for the LiF single crystal, and −0.1 ��0=6.4
�10−3 m, c=4000 m /s, and ct=−0.25�109 m /s2� for sandstone.
The values of �0 were calculated here from �0=cT using T
=0.045 �s for the crystal and T=1.6 �s for sandstone, where T is
the rise time measured at the impact surface.

The assumed linear strain wave form �Eq. �12�� may hardly
manifest in reality. Therefore, note that this case provides valuable

insight into the curvature effects but most likely will never corre-
spond to any actual spherical shock accurately. It is expected that
the factor �0 /s where the curvature effects are negligible will be
evaluated for spherical wave fronts of more general wave forms.

2.4 Jump Equations for Arbitrarily Short Rise Time. For
the wave fronts of thicknesses �0, where �0� l �l is a positive
number that is arbitrarily low�, that is, for the wave fronts of
arbitrarily short rise times, Eqs. �8� and �9� hold exactly because
R→r. The values of �, u, �, ��, and �� /�s that are included in
Eqs. �8� and �9� are finite. This means that as the value of �0 is
small, all the values of the terms of integration from 0 to �0 in
these equations become small, and that Eqs. �6� and �7� as well as
Eqs. �8� and �9� reduce to

u1 − u0 = c��1 − �0�

�1 − �0 = �0c2��1 − �0�
the equations above are the same as the RH jump conditions for a
plane wave front �8,9�. For any small value of �0, which is ex-
pressed by �0=�

0
*f�s� ��

0
* is a positive number that is arbitrarily

low, and the values of f and f� are finite�, a finite value of �� /�s
is illustrated by equation �� /�s= ����0� /�0�−����� /�0�+��, which
is obtained by substituting Eq. �12� into �� /�s.

3 Applicability of the RH Jump Conditions
Shock wave front of finite rise time is formed by the balance

struck between the wave front steepening effect by the nonlinear
mechanical properties and the smearing effect by the energy dis-
sipation such as strain rate effect. In plate impact experiments,
several authors measured particle velocity-time or stress-time his-
tories at several positions in a solid or in a porous material �see,
for example, Refs. �4–7��. As the position is distant from the
impact surface, the particle velocity profile rises slowly up to its
peak. This fact indicates that the smearing effect is more predomi-
nant over the steepening effect at the more distant position, and
that the thickness of the particle velocity wave increases with
propagation. In addition, the fact that the measured value of the
peak is lower at the more distant position, which is caused by the
strain rate and the strain acceleration as well as rarefaction waves
overtaking from behind, indicates that the amplitude of the par-
ticle velocity wave decreases with propagation. The same is true
of the stress wave in the shock wave front. As clarified in Sec. 2.3,
the geometrical factor intensifies the influence of other factors on
the jumps �u1−u0� and ��1−�0�. Therefore, the behaviors similar
to those of the wave thickness and amplitude that were observed
in plate impact experiments would be observed during propaga-
tion of an outgoing spherical wave front. Applicability of the RH
jump conditions to the jumps across an outgoing spherical wave
front of finite rise time is discussed immediately below.

Equations �13� and �15� indicate that if �0��1 and ��� /���0�1,
then the RH jump relation u1−u0=c��1−�0� holds. As is found
from Eq. �14� or Eq. �16�, further if ��0���0�1 and ��� /���0

2�1,
then the RH jump relation �1−�0=�0c2��1−�0� holds. Whether
two conditions �0��1 and ��0���0�1 hold for s
10�0 is first ex-
amined for the thickness �0 that is expressed by a reasonable
relation given below. Next, for the strain amplitude � that is ex-

Table 1 Values of g1, g2 , . . ., and g8, which are functions of the geometrical factor �0 /s, at
�0 /s=1, 10−1, 10−2, and 10−3

�0 /s g1 g2 g3 g4 g5 g6 g7 g8

1 1.83 2.83 1.33 1.67 1.50 1.75 1.75 2.50
10−1 1.07 1.14 1.03 1.07 1.05 1.08 1.08 1.15
10−2 1.01 1.01 1.00 1.01 1.01 1.01 1.01 1.02
10−3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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pressed by a reasonable relation given below, the severity between
the other two conditions ��� /���0�1 and ��� /���0

2�1 is com-
pared at s=10�0. Finally, a condition is presented to be applied to
judge whether strain data measured at positions s in the region of
s
10�0 satisfy the severe condition.

Increments 
r0=r0�t�−r0�0�, 
�0=�0−�0�0�, and 
r1=r1�t�
−r1�0�=r1�t� ��s� are introduced, and a notation where ��t�
�r0�t� and ��0��r0�0���0�0� is used, so that 
���
r0� is ex-
pressed by 
�=s+
�0. Furthermore, a ratio of two rates �
= �
�0 /�0�0�� / �
� /��0�� or �=y /x �y�
�0 /�0�0� and x
�
� /��0��, which represents the degree of increase in the wave
front thickness with propagation, is introduced. Here, y is the rate
of increase from 0 to t in the effective wave front thickness, and x
is that in the effective propagation distance. The distance s is
expressed by s= �1−��
�. The rate y should satisfy the following
two conditions. �1� The rate y increases monotonically with an
increase in the rate x. �2� The rate approaches to a value as the rate
x becomes large. Condition �1� is self-evident. Condition �2� is
based on the fact that as a spherical wave front proceeds, it ap-
proaches to a steady plane wave front �3�. For s /�0
10, a relation
y=�0x / �x+b� that satisfies both conditions, or �0=�0�0���0x /
�x+b�+1�, where �0 is a value of y at x→	, and b is a constant,
is adopted. The relation for y yields a relation �=�0 / �x+b�,
which has a reasonable property that the value of � decreases
monotonically up to �=0 with an increase in the rate x. A qua-
dratic equation x2−ax−bs /�0=0, where a= �1+�0��s /�0�+�0−b,
is obtained from three relations �=�0 / �x+b�, s= �1−��
�, and
�0=��0��1+�x�. Transformation of the quadratic equation yields
s /�0= �x2+ �b−�0�x� / ��1+�0�x+b�, which relates s /�0 to x. The
rate x is related to s /�0 by a solution x= �1 /2��a+ �a2

+4bs /�0�1/2� of the quadratic equation.
The following relation is derived by substituting the above

equation for y into �0���0�0�dy /ds

�0� = b�0/��x + b��x + b�1 − ����

The value of �0� decreases with an increase in the distance s. Val-
ues of 
� /��0�, �, 
�0 /�0�0�, and �0� at s=10�0 are listed in Table
2 for b=20 and some values of �0 in the region of �0�10, and in
Table 3 for �0=6 and some values of b in the region of b�50. As
the value of b increases, the value of 
�0 /�0�0� decreases, and the
value of �0� increases. For any values of �0 and b examined here,
the values of �0� are smaller than a value of 10−1, and therefore the

condition �0��1 is satisfied for s
10�0. Next, the following re-
lation is obtained by substituting the above equation for �0� into
�0d�0� /ds.

��0���0 = 2�0���0/s��1 − ��x�x + b�/��x + b�1 − ����2

Since �1−��x�x+b� / ��x+b�1−����2�1, inequalities ��0���0��0�,
and therefore ��0���0�1 hold for s
10�0.

For s
10�0, if ��� /��s�1, then ��� /���0�10−1, while if
��� /��s2�10, then ��� /���0

2�10−1. The severity between the two
conditions ��� /��s�1 and ��� /��s2�10 is compared at s=10�0 by
estimating values of ��� /��s and ��� /��s2. A relation �=��0� /
�z+1�, where z��s /�0�n, is adopted as ��s /�0�. This relation for �
has a feature that for a fixed value of s /�0, the amount of attenu-
ation of the amplitude ���0�−�� is larger for the larger value of n.
Note that � is a function of s /�0. Differentiation of � with respect
to s yields

���/��s = �nz/�z + 1���1 − �0��s/�0��

Table 2 shows �0��s /�0��1, so that ��� /��s�nz / �z+1�. By fur-
ther differentiating,

���/��s2 � nz/�z + 1� + n2z�z − 1�/�z + 1�2

For some values of n in the region of n�1.1, values of �s /�0�n,
��� /��s, ��� /��s2, and � /��0� at s=10�0 are listed in Table 4. For
n�1.1, it is found that ��� /���0�10−1 and ��� /���0

2�10−1. At any
given values of n, the condition ��� /��s�1 is more severe than
the condition ��� /��s2�10, because �10− ��� /��s2�� �1− ��� /��s�.
For some values of n in the region of n�1.1, and at s /�0=10, 15,
20, 25, and 30, values of ratio � /��10�, which is expressed by
� /��10�= �10n+1� / �z+1�, are listed in Table 5. At any given val-
ues of s /�0, the amount of attenuation ���10�−�� is larger for the
larger value of n.

To judge whether strain data measured at positions s in the
region of s
10�0 satisfy the condition ��� /��s�1, a critical am-
plitude ratio �m�s /�0� /�m�10� is introduced. The ratio is expressed
by

Table 2 Values of �� /�„0…, �, ��0 /�0, and �0� at s=10�0 for b
=20 and some values of �0 in the region of �0Ï10

�0 
� /��0� ��102 
�0 /�0�0� �0��102

0 10 0 0 0
2 21.4 4.84 1.03 2.39
4 39.1 6.77 2.65 2.34
6 59.4 7.56 4.49 1.94
8 80.5 7.96 6.41 1.61
10 102 8.20 8.36 1.36

Table 3 Values of �� /�„0…, �, ��0 /�0, and �0� at s=10�0 for �0
=6 and some values of b in the region of bÏ50

b 
� /��0� ��102 
�0 /�0�0� �0��102

10 67.5 7.74 5.23 1.01
20 59.4 7.56 4.49 1.94
30 51.8 7.34 3.80 2.77
40 44.9 7.07 3.17 3.44
50 38.9 6.75 2.62 3.95

Table 4 Values of „s /�0…
n, ��̇ /��s, „�̈ /�…s2, and � /�0„0… at s

=10�0 for some values of n in the region of nÏ1.1

n �s /�0�n ��� /��s ��� /��s2 � /��0�

0 1 0 0 0.5
0.2 1.58 0.12 0.13 0.39
0.4 2.51 0.29 0.34 0.29
0.6 3.98 0.48 0.65 0.20
0.8 6.31 0.69 1.09 0.14
1.0 10 0.91 1.65 0.09
1.1 12.6 1.02 1.98 0.07

Table 5 Values of ratios � /�„10… at s /�0=10, 15, 20, 25, and 30
for some values of n in the region of nÏ1.1

n

s /�0

10 15 20 25 30

0.2 1 0.948 0.912 0.887 0.866
0.4 1 0.888 0.814 0.758 0.716
0.6 1 0.816 0.706 0.632 0.572
0.8 1 0.752 0.609 0.517 0.451
1.0 1 0.688 0.524 0.422 0.355
1.1 1 0.658 0.485 0.383 0.315
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�m/�m�10� = �10m + 1�/��s/�0�m + 1�

where m ��1� is a number that satisfies ��� /��s= �nz /
�z+1���1−�0��s /�0��; where ��� /��s=1, that is, �mz / �z+1���1
−�0�s /�0�=1 where z��s /�0�m. A critical curve �m /�m�10�−s /�0
can be drawn by first evaluating s /�0 for given values of m from
s /�0=exp�−�1 /m�log��m�1−�0�s /�0�−1��� applying an iteration
method, and then �m /�m�10� using values of �s /�0�m. For some
given values of m in the region of 1.0�m�1.1, values of s /�0
and �m /�m�10� evaluated in the case of �0��s /�0��1 are listed in
Table 6.

Two differential inequalities d���� /��s� /dn�0 for s /�0
1 and
d� /dn�0 for s /�0�10 are demonstrated. The first inequality in-
dicates that the value of ��� /��s increases with an increase in the
value of n, and therefore that ��� /��s�1 for n�m. The second
indicates that the value of � decreases with an increase in the
value of n, and therefore that �m has a minimum for n�m. For a
measured value of s /�0 in the region of s /�0�10, if a measured
value of � /��10� is larger than the calculated value of �m /�m�10�,
then the condition ��� /��s�1 is satisfied. Thus, for the amplitudes
that follow �=��10��10n+1� / �z+1�, if � /��10���m /�m�10�, then
the RH jump conditions hold approximately at positions s where
the measurements were carried out. For strain data measured at
positions s in a region of s /�0
k, where k
1, the judgment can
be performed in the same manner as mentioned above by using a
value of k instead of a value of 10. This method of judgment is
also applicable to strain data measured in plate impact experi-
ments.

4 Jump Equations for Spherical Waves of General
Form

4.1 Equations. Figure 2�a� schematically shows strain waves
in outgoing spherical wave fronts ��r , t� at time t1 when the lead-
ing edge of the wave front, which is at position 0 at time 0, has
arrived at a fixed position r1, at time t when it proceeds to position
r0�t�, and at time T when it further proceeds to r0�T�, at which
point the rear of the wave front is at r1. It is found from r0�t1�
�r1�T��r1 that as position r1 is distant from the center of the
wave front, the times t1 and T increase. At t in t1� t�T, the wave
front has a range r1�r�r0�t�. Equations �1� and �2� are inte-
grated from r to r0 to become

u − � r0

R
�2

u0 =
1

R2

r

r0

r2��

�t
dr �17�

� − �0 = �0

r

r0 � r

R
�2�u

�t
dr + 2


r

r0 �0

�

r2

R3 �� − ���dr �18�

where u and � denote u�r , t� and ��r , t�, respectively.
A dimensionless time �= t /T and a dimensionless position

h���=r /���� are introduced here. Because the leading edge is at

position 0 at time 0, ���� is expressed by �����r0�t�=�0
t c�t�dt or

����=T�0
�c���d�, where c�t� or c��� is the leading edge velocity.

The strain waves ��h ,�� at �=� and at �=1 are shown schemati-
cally in Fig. 2�b�. The wave front has a dimensionless range
h1����h����1 at � in �1���1, where �1= t1 /T and h1���
=r1 /����. The symbol h denotes h��� below. As the wave front
thickness is thin, the value of �1 approaches to a value of 1. It
follows from t1�T that �1�1, and from ���1��r0�t1�=r1 that
h1��1�=1. The value of h1��� decreases from a value of 1 at �
=�1 to a value of h1�1� at �=1, that is, h1�1��h1����1. The
dimensionless position h1�1� is expressed by h1�1�
=1 / �1+�0�1� /r1�, where �0�1� is the wave front thickness at �
=1. Asay et al. �5� observed near the impact surface in the plate
impact experiment that as the position r1 is distant from the sur-
face, the thickness �0�1� increases, with the increment in �0�1� that
is much less than that in r1. Therefore, it is found that as the
position r1 is distant from the center of the wave front r1=0, the
position h1�1� is also distant from the center h1�1�=0. Variables
depending on h and � are also identical to the variables depending
on r and t. For example, ��h ,�����r , t�.

A strain wave in a spherical wave front ��h ,�� is expressed by
a power series with respect to h up to the nth-order �n
1� term

� − �0 = �
i=0

n

f i���hi �19�

where ���h1 ,��−�0� is the amplitude of the stain wave at �. Note
that the power series is the approximation assumed for a wide
class of wave forms. The equation for the radial particle velocity
wave corresponding to the strain wave is obtained by substituting
Eq. �19� into Eq. �17� as follows:

Table 6 Values of s /�0 and �m /�m„10… evaluated in the case of
�0�„s /�0…™1 for some given values of m in the region of 1.0
<m<1.1

m s /�0 �m /�m�10�

1.01 95.5 0.111
1.02 46.3 0.225
1.03 30.1 0.341
1.04 22.1 0.460
1.05 17.3 0.582
1.06 14.2 0.706
1.07 12.0 0.834
1.08 10.4 0.965

Fig. 2 Schematic diagrams of „a… strain waves in outgoing
spherical wave fronts �„r , t… at three times t1, t, and T from t1 to
T when the wave front is passing through a fixed position r1;
and „b… strain waves �„h ,�… at �=� and �=1, where � is the
dimensionless time expressed by �= t /T, and h is the dimen-
sionless position expressed by h=r /�„�…, where �„�… is the po-
sition of the leading edge of the wave front at �. Three positions
r0„t1…, r1„T…, and r1 are identical, that is, r0„t1…Ær1„T…Ær1.
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u − u0 = T−1� r0

R
�2��

i=0

n � 1

i + 3
� ḟ i� − if i�̇��1 − hi+3�	

+
1

3
r0�̇0�1 − h3�
 + �� r0

R
�2

− 1	u0 �20�

where u and � denote u�h ,�� and ����, respectively, and the dots
on the variables refer to the differentiation with respect to �. Here,
r0 /R is expressed by r0 /R= �h+ ū�r ,�� / c̄����−1, where c̄

= �1 /���0
�c���d� and ū= �1 /����r

� u�r ,��d�, where �r is the dimen-

sionless time that the leading edge has reached position r. Here,
�u�h1 ,��−u0� is the amplitude of the particle velocity wave at �.
The particle velocity u�h ,�� depends on a combination of the

strain and strain rate �f i and ḟ i�, the position and velocity of the

leading edge �� and �̇�, and position h. The equation for the radial
stress wave corresponding to the strain wave is obtained by sub-
stituting Eq. �20� into Eq. �18� as follows:

� − �0 = T−2�0

h

1 � r0

R
�2� r

R
�2�2� ṙ0

r0
−

Ṙ

R
���

t=0

n � 1

i + 3
�� ḟ i� − if i�̇��1 − hi+3�	 +

1

3
r0

2�̇0�1 − h3�

+ �

i=0

n � 1

i + 3
�� f̈ i� + �1 − i� ḟ i�̇ − if i�̈��1 − hi+3�
 + �

i=0

n

��̇� ḟ i� − if i�̇�hi+3�

+ r0�1

3
�r0�̈0 + ṙ0�̇0��1 − h3� + ṙ0�̇0h3	 + Tr0�2

ṙ0

r0
u0 − 2

Ṙ

R
u0 + u̇0��dh + 2


h

1
�0

�

r0

R
� r

R
�2

�� − ���dh �21�

where � denotes ��h ,��, and r /R=h�h+ ū / c̄�−1, ṙ0 /r0= �c / c̄��−1,

and Ṙ /R= �u / c̄��h+ ū / c̄�−1�−1. Here, ���h1 ,��−�0� is the ampli-
tude of the stress wave at �. The stress ��h ,�� depends on a

combination of the strain, strain rate, and strain acceleration �f i, ḟ i,

and f̈ i�, the position, velocity, and acceleration of the leading edge

��, �̇, and �̈�, and position h.

The position, the velocity, and the acceleration ����, �̇���, and

�̈��� are expressed by

� = c̄T�, �̇ = cT, �̈ = ċT

At �=1 at h=h1�1�, Eqs. �20� and �21� are jump equations

u1 − u0 =
c

�h1�1� + ū/c̄�2��
i=0

n � 1

i + 3
� ḟ i�c̄/c� − if i��1 − h1�1�i+3�	


�22�

where f i� f i�1�, c�c�1�, c̄� c̄�1�=�0
1c���d�, and ū� ū�r1 ,1�

=��1

1 u�r1 ,��d�, and

�1 − �0 = �0c2

h1�1�

1
h2

�h + ū/c̄�4�2�1 −
u/c

h + ū/c̄
��

t=0

n
1

i + 3
� ḟ i�c̄/c�

− if i��1 − hi+3� + �
i=0

n
1

i + 3
�c̄/c�� f̈ i�c̄/c� + �1 − i� ḟ i

− if i�ċ/c���1 − hi+3� + �
i=0

n

� ḟ i�c̄/c� − if i�hi+3
dh

+ 2

h1�1�

1
�0

�

h2

�h + ū/c̄�3 ���h,1� − ���h,1��dh �23�

where the values �0=0 and u0=0 are assumed. For finite values of

f i�1�, ḟ i�1�, and f̈ i�1�, the amounts of both jumps are finite. Equa-
tions �22� and �23� are called jump equations for an outgoing
spherical wave front of general form.

4.2 Geometrical Effect. The jumps are examined at h1�1� in
the region of u�r ,�� /c����h1�1��1, where r is in r1�r
�r0�1� and � is in �1���1. The position of the rear of the wave
front r1 is expressed by r1= �h1�1� / �1−h1�1����0�1�. The equation
for r1 indicates that r1��0�1� for h1�1��1, that is, the position
r1 is near the center of the wave front. In addition, it is found from
ū�r1 ,1� / c̄�1���1−�1�u�r1 ,1� /c�1� that ū�r1 ,1� / c̄�1��h1�1� for
u�r1 ,1� /c�1��h1�1�. Therefore, for u�r1 ,1� /c�1��h1�1�, Eq.
�22� is reduced to an equation in which h1�1� is separated from f i

and ḟ i as follows:

u1 − u0 � ch1�1�−2�
i=0

n
1

i + 3
� ḟ i�c̄/c� − if i� �24�

As an example, inequalities m�u�r1 ,1� /c�1���h1�1��1 /m,
where m
5, are given to the region of h1�1� where Eq. �24�
holds. In this case, u�r1 ,1� /c�1��0.04 is obtained for m=5. For
m=5 and u /c=0.02, the value of h1�1� increases from h1�1�
=0.1 to h1�1�=0.2 in the region of 0.02�h1�1��1. Since the
wave front thickness �0�1� does not vary greatly as described in
Sec. 4.1, the value h1�1�=0.1 is transformed to the value �r1�1
= �1 /9��0�1�, and the value h1�1�=0.2 to the value �r1�2
=0.25�0�1�, indicating that two positions �r1�1 and �r1�2 are close.
Distance 0.14�0�1� between the two positions of the leading edges
��r1�1+�0�1�� and ��r1�2+�0�1�� is very short. While the leading
edge moves for such a short distance, the value of c̄�1� /c�1� is

nearly constant, so that ��� ḟ i�c̄ /c�− if i� / �i+3������ ḟ i− if i� /
�i+3�� holds in Eq. �24�. During such a short propagation time, if
the strain wave in the wave front attenuates only slightly, then the

value of ��� ḟ i− if i� / �i+3�� is nearly constant, because neither val-

ues of f i�1� and ḟ i�1� vary greatly. In the region of 0.1�h1�1�
�0.2, even for the strain wave that attenuates only slightly, the
amount of the jump �u1−u0� is reduced approximately proportion-
ally to h1�1�−2.

For u�r ,1� /c�1��h1�1�, approximations �h+ ū / c̄��h and
�u /c� / �h+ ū / c̄��0 hold in the region of h1�1��h�1. Under
these approximations, Eq. �23� is integrated to reduce to
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�1 − �0 � �0c2h1�1�−1��
i=0

n

ai�1��1 − h1�1� −
1

i + 2
h1�1�

��1 − h1�1�i+2�
 + h1�1��
i=0

n
1

i + 2
� ḟ i�c̄/c� − if i�

��1 − h1�1�i+2� + 2h1�1�

h1�1�

1
1

�c2

� − ��

h
dh�

�25�
where

ai�1� =
1

i + 3
� f̈ i�c̄/c�2 + �3 − i� ḟ i�c̄/c� − if i�2 + �c̄/c��ċ/c���

Because h1�1��1, Eq. �25� has a simple form where h1�1� sepa-

rates from f i, ḟ i, and f̈ i as follows:

�1 − �0 � �0c2h1�1�−1�A�1� + 2h1�1�

h1�1�

1
1

�c2

� − ��

h
dh


�26�

where A�1�=�ai�1� and c�c�1�. As explained above, A�1�
�const for the strain wave that attenuates only slightly.

In the region of 0.1�h1�1��0.2, the dependence of the second
term in brackets on the right side of Eq. �26� on h1�1� is examined
by expressing this term by B�1�f�h1�1��, where variable f has f
=1 at h1�1�=0.1, and B�1� represents B��� at �=1. As a result, Eq.
�26� is expressed by

�1 − �0 � �0c2A�1�h1�1�−1�1 +
B�1�
A�1�

f

If the value of ��−��� /� varies greatly with propagation, then the
value of B�1� also varies. Regardless of such a variation of the
value of B�1�, if B�1��A�1�, then the second term in brackets on
the right side of the above equation can be neglected. This indi-
cates that even for the strain wave that attenuates only slightly, the
amount of the jump ��1−�0� is reduced approximately propor-
tionally to h1�1�−1. If B�1��A�1� and furthermore the value of f
decreases or does not increase greatly with an increase in the
value of h1�1�, then even for the strain wave that attenuates only
slightly, the amount of the jump ��1−�0� is reduced greatly. As an
example, for some viscous fluids and solids, which may have a
mechanical property that follows a monotone decreasing function
of h�1�, ��−��� /�= �1 /2�c2Bh�1�−n, where B=B�1� / ��0.11−n

−0.1� /n�, the variable f = �h1�1�1−n−h1�1�� / �0.11−n−0.1� is evalu-
ated in a region of h1�1��h�1��1. The values of f are listed in
Table 7 for some values of n. For the values of n examined, the
function f does not increase greatly with an increase in the value
of h1�1�.

In a region of m�u /c��h1�1�� �1 /m�1/2 where m
5, Eq. �24�

is also an approximate equation for Eq. �22�. In this case, Eq. �24�
has a lower precision of approximation with respect to h1�1�. Be-
cause h1�1�2�1 in this region of h1�1�, an approximate equation
for Eq. �25� is

�1 − �0 � �0c2�h1�1�−1�A�1� + 2h1�1�

h1�1�

1
1

�c2

� − ��

h
dh	

+ C�1�
 �27�

where

C�1� = �
i=0

n
1

i + 2
� ḟ i�c̄/c� − if i − ai�1�� − A�1�

For m=5, inequalities 5�u /c��h1�1��0.45 and u /c�0.09 hold.

5 Conclusions
The Rankine–Hugoniot �RH� type equations were derived for

the jumps in radial particle velocity and stress across an outgoing
spherical wave front of finite rise time. For a linear volumetric
strain wave �, it was shown that the effect of the curvatures in the
wave front might be neglected at distances of movement of the
rear of the wave front s that were more than ten times as long as
the effective wave front thickness �0. Furthermore, a method was
developed to judge the applicability of the RH jump conditions to
the jumps at these distances. If the values of strain amplitude ratio
��s /�0� /��10� measured are larger than the calculated value of the
critical ratio �m�s /�0� /�m�10�, the RH jump conditions are appli-
cable. For strain data measured at positions s in a region of s /�0

k �k
1�, the judgment can also be performed in the same man-
ner. This method of judgment is also applicable to strain data
measured in plate impact experiments. The jump equations for
spherical wave fronts of general form were also derived. For �
�0.09, these equations showed that the particle velocity and
stress in the jumps were greatly reduced near the center of the
wave front by the effect of the curvatures.
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Table 7 Values of f at h1„1…=0.1, 0.15, and 0.2 for some values
of n

n

h1= �0.1�

0.1 0.15 0.2

0 1 1.24 1.40
0.4 1 1.13 1.20
0.8 1 1.01 0.99
1.2 1 0.88 0.79
1.6 1 0.77 0.63
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Experimental Data Have
to Decide Which of the
Nonprobabilistic Uncertainty
Descriptions—Convex Modeling
or Interval Analysis—to Utilize
This study shows that the type of the analytical treatment that should be adopted for
nonprobabilistic analysis of uncertainty depends on the available experimental data. The
main idea is based on the consideration that the maximum structural response predicted
by the preferred theory ought to be minimal, and the minimum structural response pre-
dicted by the preferred theory ought to be maximal, to constitute a lower overestimation.
Prior to the analysis, the existing data ought to be enclosed by the minimum-volume
hyper-rectangle V1 that contains all experimental data. The experimental data also have
to be enclosed by the minimum-volume ellipsoid V2. If V1 is smaller than V2 and the
response calculated based on it R�V1� is smaller than R�V2�, then one has to prefer
interval analysis. However, if V1 is in excess of V2 and R�V1� is greater than R�V2�, then
the analyst ought to utilize convex modeling. If V1 equals V2 or these two quantities are
in close vicinity, then two approaches can be utilized with nearly equal validity. Some
numerical examples are given to illustrate the efficacy of the proposed methodology.
�DOI: 10.1115/1.2912988�

Keywords: uncertainty description, convex modeling, interval analysis, ellipsoid,
hyper-rectangle

1 Introduction
Probabilistic approaches are used by numerous analysts for the

safety assessment of structures whose parameters or loadings on
them are modeled as uncertain variables or functions. In recent
decades, some alternatives of it have been suggested. Fuzzy-sets
based approaches gain much popularity. There are many discus-
sions on philosophical implications of each of these approaches.
Whereas the probabilistic methodology requires the knowledge of
probability densities, the fuzzy-sets based approaches demand the
knowledge of membership functions. More recently, yet another
alternative is embraced by the investigators, that is, not based on
any specified measure, either probabilistic or fuzzy, of uncertain
variables. It presupposes the knowledge only of bounds of uncer-
tain quantities. These are then called as unknown-but-bounded or
uncertain-but-bounded variables. This analysis is both old and
new. It is chronologically old but new by its revived use. Appar-
ently, the first work on the response of a single-degree-of-freedom
system under uncertain-but-bounded excitation was written by
Bulgakov �1� in 1946. He especially mentioned that the task is to
calculate the upper bounds of structural response “under unfavor-
able circumstances,” when the “disturbing action yp�t��p
=1,2 , . . . ,r� satisfies the condition �yp�t��� lp �lp constant� but are
otherwise arbitrary one-valued continuous functions of the time t
possessing as many derivatives as necessary.” This problem was
dubbed by Bulgakov �1� as the “problem of accumulation of dis-
turbances” �see also his other paper �2�, in 1940, which considers
a special case�.

There is considerable literature in the Russian language on the
Bulgakov problem. Independently, in late 1960s, Schweppe �3�
developed an analogous thinking based on ellipsoidal modeling,
representing the uncertain variables as belonging to an ellipsoid.

Recently, some researchers in uncertain mechanics develop in-
terval analysis, whereas others follow convex modeling �4–12�.
The question arises if these analyses are specifically interrelated,
should one perform both analyses, or one of them is preferable?
This work tries to elucidate the possible reply to this question.
Some researchers performed a comparison of results derived by
both methods. Elishakoff et al. �13� derived a minimum-volume
ellipsoid that encloses the minimum-volume parallelepiped for
buckling analysis. Elishakoff et al. �14� studied the buckling of
elastic column on nonlinear elastic foundation by interval analy-
sis, whereas Qiu et al. �15� dealt with the same problem via con-
vex modeling. Qiu and Wang �16� specially distinguished between
these two nonprobabilistic set-theoretical models.

Although convex modeling and interval analysis have been ex-
tensively used, in practice, which of the nonprobabilistic uncertain
descriptions, convex modeling or interval analysis, should be pre-
ferred? In this study, this problem will be answered. The experi-
mental data are shown to be of the cardinal influence on which of
these methods ought to be given a preference.

Consider the case that due to high cost of the measurements, the
experimental points are too scant to determine their statistical in-
formation on uncertain parameters: If we choose nonprobabilistic
set-theoretical convex methods, convex modeling or interval
analysis, for uncertain modeling, then the precondition is to seek
or determine the suitable set containing the limited experimental
points. In fact, there is more than one set to be able to enclose the
limited experimental points. However, too big set will produce
overconservative bounds on the structural responses. Of course, it
is impossible for us to know the real bounds on uncertain param-
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eters based on the limited experimental points. The enclosing set
with minimal volume property may be a better selection, which
will produce lower overestimation on the bounds of the structural
responses. We can only act on what we know.

2 Description of the Method by Zhu, Elishakoff, and
Starnes

In this section, the description of the method by Zhu et al. �17�,
in which the smallest hyper-rectangle and the smallest ellipsoid
containing the given experimental data are determined, is stated in
brief.

Suppose that there are m uncertain parameters ai�i
=1,2 , . . . ,m� describing either the structural properties or the ex-
citation. These parameters constitute an m-dimensional parameter
space, namely, a= �a1 ,a2 , . . . ,am�. Suppose that we have limited
information on these parameters, represented by M experimental
points, a�r��r=1,2 , . . . ,M� in this m-dimensional space. Convex
modeling assumes that all these experimental points belong to an
ellipsoid

�a − a0�TW�a − a0� � 1 �1�

where a0 is the state vector of the central point of the ellipsoid and
W is the weight matrix. Interval analysis assumes that all experi-
mental points belong to a hyper-rectangle.

By using transformation matrix Tm��1 ,�2 , . . . ,�m−1� given in
Ref. �17�, the above M points in the rotated coordinate system will
have their new coordinates denoted by b�r��r=1,2 , . . . ,M�. To ob-
tain the smallest ellipsoid, let us first examine an m-dimensional
box of the form

�b − b0� � d �2�

which contains all M points. The vector of semiaxes d
= �d1 ,d2 , . . . ,dm�T and the vector of central points b0
= �b10,b20, . . . ,bm0�T of the “box” in the rotated coordinate system
are given by

dk =
1

2
�max

r
�bk

�r�� − min
r

�bk
�r���

bk0 =
1

2
�max

r
�bk

�r�� + min
r

�bk
�r���

�r = 1,2, . . . ,M ;k = 1,2, . . . ,m�

�3�
We now enclose this box by an ellipsoid

�
k=1

m
�bk − bk0�2

gk
2 � 1 �4�

where gk are the semiaxes of the ellipsoid. There are infinite num-
ber of ellipsoids that contain the box given in Eq. �2�. Clearly, the
best choice is the one with minimum volume. The volume of an
m-dimensional ellipsoid is given by

Ve = Cm�
k=1

m

gk �5�

where Cm is a constant.
From the monograph by Elishakoff et al. �13� and paper by Qiu

�18�, corresponding to the smallest ellipsoid, the semiaxes of the
smallest ellipsoid should be

gi = �mdi �i = 1,2, . . . ,m� �6�
Thus, once the size of the box �Eq. �2�� is known, the semiaxes

of the minimum-volume ellipsoid enclosing the box of the experi-
mental data are readily determined by utilizing Eq. �6�. If there are
no experimental points at the corner of the box, the size of such an
ellipsoid may further be reduced until one of the experimental

points reaches the surface of the ellipsoid. The semiaxes of the
ellipsoid in this case may be replaced by �gk, where the factor is
determined from the condition

� =�max
r

�
k=1

m
�bk

�r� − bk0�2

gk
2 � 1 �r = 1,2, . . . ,M� �7�

If there are some experimental points in the corner of the multi-
dimensional box, the factor � equals unity. The ellipsoid �4� can
be written in the form

�b − b0�TD�b − b0� � 1 �8�

in which b0 is the vector of central points whose components are
given by Eq. �3� and D is a diagonal matrix

D = diag���g1�−2,��g2�−2, . . . ,��gm�−2� �9�
The volume of the ellipsoid now reads

Ve = Cm�m�
k=1

m

gk �10�

which is a function of a set of parameters �k�k=1,2 , . . . ,m−1�.
Therefore, the best ellipsoid among these ellipsoids is the one
which contains all given points and possesses the minimum vol-
ume, i.e.,

Ve = min
�1,�2,. . .,�m−1

	Ve��1,�2, . . . ,�m−1�
 �11�

A possible approach to determine this ellipsoid is to search among
all possible cases by increasing �k�k=1,2 , . . . ,m−1� from 0 to
� /2 in sufficiently small increments ��k and to compare the vol-
umes of so obtained ellipsoids. Once one finds the ellipsoid with
minimum volume in one direction, say, �k0�k=1,2 , . . . ,m−1�, the
ellipsoid can be transformed back into the original coordinate sys-
tem by applying the transformation matrix Tm. Hence, the vector
a0 of the central point and the weight matrix W in Eq. �1� become

a0 = Tm
T b0, W = Tm

T DTm �12�

where Tm=Tm��10,�20, . . . ,�m0�. So, Eq. �12� constitutes the
smallest ellipsoid containing all experimental points. The box cor-
responding to the smallest ellipsoid is the smallest hyper-
rectangle.

3 Convex Modeling and Interval Analysis for the
Structural Response

For convenience, in this section, convex modeling method and
interval analysis method for the static response analysis of struc-
tures with uncertain parameters are reformulated �see Ref. �18��.
In fact, the presented concept in this study can also be applied to
other linear elastic structural mechanics problem with uncertainty,
such as the natural frequency analysis, the dynamic response
analysis, etc.

The matrix equation of static equilibrium in the finite element
method can be written as

K�a�u�a� = f�a� �13�

where K= �kij� is the n�n-dimensional stiffness matrix, u= �ui� is
the n-dimensional nodal displacement vector, f= �f i� is the
n-dimensional external load vector, and a= �a1 ,a2 , . . . ,am�T is the
structural parameters, such as the physical, material, and geomet-
ric properties in structures.

Consider a realistic situation in which not enough information
is available on the structural parameters to justify an assumption
on their probabilistic characteristics. It is assumed that by using
the method of Zhu et al. �17�, the derived smallest ellipsoid and
the derived smallest hyper-rectangle on the structural parameters
can be obtained as, respectively,
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Z�W,�� = 	a:a � Rm,�a − a0�TW�a − a0� � �2
 �14�

and

a� � a � ā or a0 − �a � a � a0 + �a �15�

where a0= �ai0��Rm is the nominal value vector of the structural
parameter vector a, W is a positive definite matrix and is called
the weight matrix, � is a positive constant and is called the radius
of the ellipsoid, a� and ā are the lower bound and upper bound of
the hyper-rectangle, and �a is the radius of the hyper-rectangle.

The structural parameter of a value slightly different from this
nominal value can be denoted as

a = a0 + �a or ai = ai0 + �ai, i = 1,2, . . . ,m �16�

where �a= ��ai��Rm is a small quantity.
By Taylor’s series expansion, the static displacement of the

structure with uncertain parameter vector a=a0+�a, to first order
in �a, is

ui�a� = ui�a0 + �a� = ui�a0� + �
j=1

m
�ui�a0�

�aj
�aj, i = 1,2, . . . ,n

�17�
For convenience of notation, let us define

�T = � �ui�a0�
�a1

,
�ui�a0�

�a2
, . . . ,

�ui�a0�
�am

� = � �ui0

�a1
,
�ui0

�a2
, . . . ,

�ui0

�am
�
�18�

By combination of Eqs. �17� and �14�, the most and least favor-
able response for convex modeling method can be obtained as
�see Ref. �14��

u� C = u0 − ���TW−1� and ūC = u0 + ���TW−1� �19�
By combination of Eqs. �17� and �15�, the most and least favor-

able responses for interval analysis method can be obtained as
�see Ref. �18��

u� iI = ui0 − �
j=1

m 
 �ui0

�aj

�aj and ūiI = ui0 + �

j=1

m 
 �ui0

�aj

�aj

�20�
Thus, in the case that the smallest intervals or hyper-rectangle

containing uncertain parameters are known, interval analysis
method can be adopted to obtain the most and least favorable
responses. In the case that the smallest ellipsoid containing uncer-
tain parameters are known, convex modeling method can be
adopted to obtain the most and least favorable responses.

So, a question will arise. Which method is better? In other
words, which method will give the tighter bounds on the structural
responses? In the following, a 7-bar planar truss structure and a
60-bar space truss structure are used to reply to this quest.

4 Seven-Bar Planar Truss Structure
Let us consider a seven-bar planar truss structure with linear

elastic properties depicted in Fig. 1. Here, A=5 is the cross-
sectional area, E=200 is Young’s modulus, F1 is an external load
at Node No. 2, and F2 is an external load applied at Node No. 4.
The parameters of the truss are given as dimensionless numbers,
since the physical values are not relevant to our analysis.

This truss is the same as adopted by Skalna �19� but here the
loads F1 and F2 are considered to be uncertain, and the other
properties of the truss, such as A and E, are deterministic. Namely,
the truss members have deterministic stiffness.

In the following, several sets of hypothesized data for uncertain
parameters will be given. By using the method of Zhu et al. �17�,
the smallest ellipse and rectangle can be derived. Based on the
derived ellipse and rectangle, the most and least favorable re-
sponses of the structure can be calculated by convex modeling
method and interval analysis method, respectively.

We will discuss this problem in the following two cases: One is
that the principal axes of the derived ellipse and rectangle are
parallel to the global coordinate system; the other is that the prin-
cipal axes of the derived ellipse and rectangle are not parallel to
the global coordinate system.

4.1 Principal Axes of the Derived Ellipse and Rectangle
are Parallel to the Global Coordinate System

Case I. Consider a set of hypothesized data for uncertain pa-
rameters as shown in Fig. 2, and they are listed in Table 1. Here,
these hypothesized data are randomly generated in order to pro-
ceed to the numerical simulations, but in practice, the samples for
uncertain parameters can be generally obtained by the
experiments.

The smallest rectangle obtained from the set of data by using
the method of Zhu et al. �17� is

F1
I = �0.80,1.20�, F2

I = �0.90,1.10� �21�

Fig. 1 A seven bar planar truss structure

Fig. 2 Rectangle and ellipse containing the data on uncertain
parameters F1 and F2
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Based on Eq. �21�, we conclude that the central values of F1
and F2 are, respectively,

F1c = �0.80 + 1.20�/2 = 1.0, F2c = �0.90 + 1.10�/2 = 1.0

�22�

and the values of radii F1 and F2 are, respectively,

�F1 = �1.20 − 0.80�/2 = 0.2, �F2 = �1.10 − 0.90�/2 = 0.1

�23�
Thus, one can analyze the system as subjected to an interval

load vector with nominal values �1.0, 1.0� and scatter of �20%,
10%�.

On the other hand, the smallest ellipse can be obtained from the
set of data by using the method of Zhu et al. �17�. The optimal
rotation angle �10 obtained is 0 deg, so the transformation matrix
T2 is

T2 = �1 0

0 1
� �24�

In the case of �10=0 deg, the vector of semiaxes and the vector
of central point of the box in the optimal rotated coordinate sys-
tem are, respectively, d= �d1 ,d2�T= �0.2,0.1�T and b0= �b10,b20�T

= �1.0,1.0�T. The semiaxes of the smallest ellipsoid are g1=�2d1

=0.2828 and g2=�2d2=0.1414. The diagonal matrix D is

D = diag���g1�−2,��g2�−2� = diag�25,100� �25�

where �=�2 /2. Thus, we can get

a0 = T2
Tb0 = �1.0,1.0�T, W = T2

TDT2 = �25 0

0 100
� �26�

It can be seen from Fig. 2 that the derived rectangle contains
the derived ellipse based on the hypothesized data listed in Table
1.

We can find that the higher-order derivatives of static responses
of the seven-bar planar truss structure with respect to uncertain
parameters are all zeros. Thus, Eq. �17� based on the first-order
Taylor series for this example will be linear and exact, i.e.,

ui�F1,F2� = ui�F1c + �F1,F2c + �F2�

= ui�F1c,F2c� +
�ui�Fc�

�F1
�F1 +

�ui�Fc�
�F2

�F2,

i = 1,2, . . . ,n �27�
This is the reason why only the external loads are taken as the
uncertain parameters in this study.

Taking the derivative of both sides of Eq. �13� yields

�K

�Fj
u + K

�u

�Fj
=

�f

�Fj
, j = 1,2 �28�

Due to the vanishing of �K /�Fj for this problem, the sensitivity
derivative of the structural response with respect to uncertain pa-
rameters becomes

�u

�Fj
= K−1 �f

�Fj
, j = 1,2 �29�

Substitution of Eqs. �22�, �23�, and �29� into Eq. �20� yields the
most and least favorable responses in the y-direction of Node 3 of
the seven-bar planar truss structure obtained from interval analysis
method as follows:

min�uI
3y� = 0.005803, max�uI

3y� = 0.007852 �30�

Substitution of Eqs. �26� and �29� into Eq. �19� provides us with
the most and least favorable responses in the y-direction of Node
3 of the seven-bar planar truss structure obtained from convex
modeling method as follows:

min�uC
3y� = 0.006064, max�uC

3y� = 0.007591 �31�

The “�” points on the derived rectangle in Fig. 2 are the most
and least favorable points for interval analysis method. The “�”
points on the derived ellipse in Fig. 2 are the most and least
favorable points for convex modeling method. The two markers �
and � have the same meaning in sequel figures.

Thus, it can be seen from Eqs. �30� and �31� that interval analy-
sis method gives tighter bounds of responses than convex model-
ing method in the case of data points listed in Table 1.

Case II. Consider another set of hypothesized data for uncertain
parameters as shown in Fig. 3, and they are listed in Table 2.

The smallest rectangle obtained from the set of data by using
the method of Zhu et al. �17� is

F1
I = �0.90,1.10�, F2

I = �0.95,1.05� �32�

Fig. 3 Rectangle and ellipse containing the data on uncertain
parameters F1 and F2

Table 1 The values of uncertain parameter F1 and F2

k 1 2 3 4 5 6 7 8 9 10 11 12

F1 0.991 1.082 1.085 0.938 0.976 0.993 1.011 1.056 0.800 1.200 1.000 1.000
F2 1.018 1.031 0.964 1.037 0.965 1.011 1.048 1.008 1.000 1.000 0.900 1.100

Table 2 The values of uncertain parameter F1 and F2

k 1 2 3 4 5 6 7 8 9 10 11 12

F1 0.991 1.082 1.085 0.938 0.976 0.993 1.011 1.056 0.900 1.100 1.100 0.900
F2 1.018 1.031 0.964 1.037 0.965 1.011 1.048 1.008 0.950 0.950 1.050 1.050
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Based on Eq. �32�, we conclude that the central values and the
values of radii of F1 and F2 are, respectively,

F1c = 1.0, F2c = 1.0, and �F1 = 0.1, �F2 = 0.05 �33�
Thus, one can analyze the system as subjected to an interval

load vector with nominal values �1, 1� and scatter of �10%, 5%�.
On the other hand, the smallest ellipse can be obtained from the

set of data by using the method of Zhu et al. �17�. The optimal
rotation angle �10 obtained is 0 deg. Similar to Eqs. �24�–�26�, the
vector a0 of the central point and the weight matrix W can be
obtained as

a0 = T2
Tb0 = �1.0,1.0�T, W = T2

TDT2 = �50 0

0 200
� �34�

It can be seen from Fig. 3 that the derived ellipse contains the
derived rectangle based on the hypothesized data listed in Table 2.

By substituting Eqs. �33� and �29� into Eq. �20� and substituting
Eqs. �34� and �29� into Eq. �19�, the most and least favorable
responses in the y-direction of Node 3 of the seven-bar planar
truss structure can be, respectively, obtained from the interval
analysis method and convex modeling method as follows:

min�uI
3y� = 0.006316, max�uI

3y� = 0.007340 �35�

and

min�uC
3y� = 0.006288, max�uC

3y� = 0.007367 �36�

Thus, it can be seen from Eqs. �35� and �36� that convex mod-
eling method gives tighter bounds of responses than interval
analysis method in the case of data points listed in Table 2.

Under this circumstance, an interesting phenomenon can be
seen. For convex modeling method, the extreme value points on
the ellipse in Fig. 3 may be different based on different structural
parameters. Namely, the locations of the extreme value points of

convex modeling method will change by changing the structural
parameters. In certain particular case, the extreme value points of
convex modeling method and interval analysis method will coin-
cide.

4.2 Principal Axes of the Derived Ellipse and Rectangle
are not Parallel to the Global Coordinate System

Case I. Consider a set of hypothesized data for uncertain pa-
rameters as shown in Fig. 4, and they are listed in Table 3.

The smallest rectangle obtained from the set of data by using
the method of Zhu et al. �17� is shown in Fig. 4. The smallest
ellipse can be obtained from the set of data by using the method of
Zhu et al. �17�. The optimal rotation angle �10 obtained is 30 deg.
Similarly, the vector a0 of the central point and the weight matrix
W can be obtained as

a0 = T2
Tb0 = �0.366,1.366�T, W = T2

TDT2 = � 43.75 − 32.48

− 32.48 81.25
�

�37�
As mentioned above, Eq. �17� based on the first-order Taylor

series will be exact and linear for this example. Due to the con-
vexity of the derived smallest rectangle, the most and least favor-
able responses in the y-direction of Node 3 of the seven bar planar
truss structure for interval analysis method will reach on the four
vertiees of the smallest rectangle. By calculating and comparing
the four responses, the most and least favorable responses or the
minimum and maximum values of them are, respectively,

min�ul
3y� = 0.004855, max�ul

3y� = 0.006970 �38�

By substituting Eqs. �37� and �29� into Eq. �19�, we obtain the
most and least favorable responses in the y-direction of Node 3 of
the seven-bar planar truss structure obtained from convex model-
ing method as follows:

min�uC
3y� = 0.004972, max�uC

3y� = 0.006854 �39�

Table 3 The values of uncertain parameter F1 and F2

k 1 2 3 4 5 6 7 8 9 10 11 12

F1 0.349 0.422 0.458 0.294 0.362 0.355 0.351 0.411 0.193 0.539 0.416 0.316
F2 1.377 1.434 1.377 1.367 1.323 1.372 1.413 1.401 1.266 1.466 1.279 1.453

Table 4 The values of uncertain parameter F1 and F2

k 1 2 3 4 5 6 7 8 9 10 11 12

F1 0.349 0.422 0.458 0.294 0.362 0.355 0.351 0.411 0.304 0.478 0.428 0.254
F2 1.377 1.434 1.377 1.367 1.323 1.372 1.413 1.401 1.273 1.373 1.459 1.359

Fig. 4 Rectangle and ellipse containing the data on uncertain
parameters F1 and F2

Fig. 5 Rectangle and ellipse containing the data on uncertain
parameters F1 and F2
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Thus, it can be seen from Eqs. �38� and �39� that interval analy-
sis method gives tighter bounds of responses than convex model-
ing method in the case of data points listed in Table 3.

Case II. Consider another set of hypothesized data for uncertain
parameters as shown in Fig. 5, and they are listed in Table 4.

The smallest rectangle obtained from the set of data by using
the method of Zhu et al. �17� is shown in Fig. 5. The smallest
ellipse can be obtained from the set of data by using the method of
Zhu et al. �17�. The optimal rotation angle �10 obtained is 30 deg.
Similarly, the vector a0 of the central point and the weight matrix
W can be obtained as

a0 = T2
Tb0 = �0.366,1.366�T, W = T2

TDT2 = � 87.50 − 64.95

− 64.95 162.50
�

�40�

In perfect analogy with Eq. �38�, the most and least favorable
responses in the y-direction of Node 3 of the seven-bar planar
truss structure for interval analysis method can be obtained as
follows:

min�ul
3y� = 0.005384, max�ul

3y� = 0.006441 �41�

We substitute Eqs. �40� and �29� into Eq. �19� to get the most
and least favorable responses in the y-direction of Node 3 of the
seven-bar planar truss structure obtained from convex modeling
method as follows:

min�uC
3y� = 0.005247, max�uC

3y� = 0.006578 �42�

Thus, it can be seen from Eqs. �41� and �42� that convex mod-
eling method gives tighter bounds of responses than interval
analysis method in the case of data points listed in Table 4. Al-
though only the displacement responses in the y-direction of Node
3 of the seven-bar planar truss structure are compared, the analy-
sis will not qualitatively change if a different aspect of response of
the truss structure were used to carry out the comparisons of con-
vex modeling with interval analysis due to the linear elastic
properties.

We can find from the above analysis that the choice for two
methods, convex modeling or interval analysis, is decided by the
distribution of sample data points on uncertain parameters.

5 Sixty-Bar Space Truss Structure
Consider a 60-bar space truss structure with linear elastic prop-

erties subject to two x-directional loads, as shown in Fig. 6. The
external loads F1 and F2, respectively, act on Node Nos. 21 and
22. Young’s moduli of the bars are Ei=2.1�1011�i=1,2 . . . ,60�.
The cross-sectional areas of the bars are Ai=1.0�10−3�i
=1,2 , . . . ,60�.

Suppose that the external loads F1 and F2 are still considered to
be uncertain, and the other properties of the truss, such as A and
E, are deterministic. Namely, the truss members have determinis-
tic stiffness.

In the previous section, the case that there exists the inclusion
relation between the derived ellipse and rectangle is studied. In
this section, we will consider the noninclusion relation between
them.

Case I. Consider a set of hypothesized data for uncertain pa-
rameters as shown in Fig. 7, and they are listed in Table 5.

The smallest rectangle obtained from the set of data by using
the method of Zhu et al. �17� is shown in Fig. 7. The smallest
ellipse can be obtained from the set of data by using the method of

Table 5 The values of uncertain parameter F1 and F2

k 1 2 3 4 5 6 7 8 9 10 11 12

F1 0.349 0.422 0.458 0.294 0.362 0.355 0.351 0.411 0.330 0.452 0.443 0.289
F2 1.377 1.434 1.377 1.367 1.323 1.372 1.413 1.401 1.288 1.358 1.433 1.299

Fig. 6 A 60-bar space truss structure

Fig. 7 Rectangle and ellipse containing the data on uncertain
parameters F1 and F2

Fig. 8 Rectangle and ellipse containing the data on uncertain
parameters F1 and F2
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Zhu et al. �17�. The optimal rotation angle �10 obtained is 30 deg.
Similarly, the vector a0 of the central point and the weight matrix
W can be obtained as

a0 = T2
Tb0 = �0.3664,,1.3653�T,

�43�

W = T2
TDT2 = � 119.71 − 91.10

− 91.10 224.91
�

Similar to Eqs. �38� and �41�, the most and least favorable
responses in the x-direction of Node 21 of the 60-bar space truss
structure for interval analysis method can be obtained as follows:

min�ul
21x� = 1.6491 � 10−7, max�ul

21x� = 3.0862 � 10−7

�44�
Substitution of Eqs. �43� and �29� into Eq. �19� yields the most

and least favorable responses in the x-direction of Node 21 of the
60-bar space truss structure obtained from convex modeling
method as follows:

min�uC
21x� = 1.6575 � 10−7, max�uC

21x� = 3.0777 � 10−7

�45�
Thus, it can be seen from Eqs. �44� and �45� that convex mod-

eling method gives tighter bounds of responses than interval
analysis method in the case of data points listed in Table 5.

Case II. Consider another set of hypothesized data for uncertain
parameters as shown in Fig. 8, and they are listed in Table 6.

The smallest rectangle obtained from the set of data by using
the method of Zhu et al. �17� is shown in Fig. 8. The smallest
ellipse is obtained from the set of data by using the method of Zhu
et al. �17�. The optimal rotation angle �10 obtained is 10 deg.
Similarly, the vector a0 of the central point and the weight matrix
W can be obtained as

a0 = T2
Tb0 = �0.8113,1.1576�T,

�46�

W = T2
TDT2 = � 73.46 − 35.98

− 35.98 271.17
�

Similar to Eq. �38�, the most and least favorable responses in
the x-direction of Node 21 of the 60-bar space truss structure for
interval analysis method can be obtained as follows:

min�ul
21x� = 4.5511 � 10−7, max�ul

21x� = 5.9339 � 10−7

�47�
Substitution of Eqs. �46� and �29� into Eq. �19� results in the

most and least favorable responses in the x-direction of Node 21
of the 60-bar space truss structure obtained from convex modeling
method as follows:

min�uC
21x� = 4.4628 � 10−7, max�uC

21x� = 6.0222 � 10−7

�48�
Thus, it can be seen from Eqs. �47� and �48� that interval analy-

sis method gives tighter bounds of responses than convex model-
ing method in the case of data points listed in Table 6.

From the analysis of this section, we can still find that the
sample data points decide which of the nonprobabilistic uncer-
tainty descriptions, convex modeling or interval analysis, to be
preferred.

6 Conclusion
In this study, through numerical examples, convex modeling

and interval analysis are extensively compared based on the same
experimental points. Some explanations are given for the problem
that which of the nonprobabilistic uncertainty descriptions, con-
vex modeling or interval analysis, ought to be utilize. Given the
experimental points, the smallest hyper-rectangle and the smallest
ellipsoid containing them can be obtained. From these numerical
examples, it can be concluded that �1� if V1 is smaller than V2,
then one has to prefer interval analysis; �2� if V1 is in excess of V2,
then the analyst ought to utilize convex modeling; and �3� if V1
equals V2 or these two quantities are in close vicinity, then two
approaches can be utilized with nearly equal validity. Therefore,
the type of the analytical treatment that should be adopted for
nonprobabilistic analysis of uncertainty depends on the available
experimental data.

Of course, the purpose of the paper is not to replace the proba-
bilistic approach by the nonprobabilistic set-theoretic convex
methods. The latter is a possible alternative or a supplementary
way of the uncertainty analysis when scarce data are available to
justify the probabilistic analysis. We conclude that the type of the
analysis of uncertainty depends on the type and amount of avail-
able information.
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Screw Dislocations in a
Three-Phase Composite Cylinder
Model With Interface Stress
A three-phase composite cylinder model is utilized to study the interaction between screw
dislocations and nanoscale inclusions. The stress boundary condition at the interface
between nanoscale inclusion and the matrix is modified by incorporating surface/
interface stress. The explicit solution to this problem is derived by means of the complex
variable method. The explicit expressions of image forces exerted on screw dislocations
are obtained. The mobility and the equilibrium positions of the dislocation near one of
the inclusions are discussed. The results show that, compared to the classical solution
(without interface stress), more equilibrium positions of the screw dislocation may be
available when the dislocation is close to the nanoscale inclusion due to consider inter-
face stress. Also, the mobility of the dislocation in the matrix will become more complex
than the classical case. �DOI: 10.1115/1.2913041�

1 Introduction
Dislocation mobility plays a critical role in analyzing the physi-

cal and mechanical behavior of many materials, and this mobility
is dependent on the internal forces acting on the dislocations �1�.
The interaction of dislocations with inclusions embedded in the
matrix is an important topic in studying the mechanical behavior
of the materials. This is mainly due to the fact that internal forces
acting on the dislocations can be significantly influenced by the
presence of all kinds of inclusions. In view of its importance, this
problem has received much attention for the past several decades
�see, for example, Refs. �2–12� and references cited therein�.

In general, bonding condition at the interface is one of the
important factors that control the stress fields in studying the in-
teraction between dislocations and inclusions. It is well known
that the surface/interface of inclusions is a special region of very
small thickness. Atoms at the surface/interface experience a dif-
ferent local environment than atoms in the interior of an inclusion,
and the equilibrium position and energy of those atoms will, in
general, be different from those of the atoms in the interior. Since
the equilibrium lattice spacing in the surface/interface is different
from that in the bulk, surface/interface stress appears. For a nanos-
cale inclusion, with a large ratio of the surface/interface region to
the inclusion, the surface/interface plays a very important role,
and there is thus a need to consider the contribution of the surface/
interface stress �13�. A generic and mathematical exposition for
elastic isotropic solids with the surface/interface energy �surface/
interface stress� has been presented by Gurtin and his co-workers
�14,15�. In their work, a surface/interface region is approximated
as a vanishing thickness adhering to the bulk solid without slip-
ping. The equilibrium and constitutive equations of the bulk solid
are the same as those in the classical elasticity, while the surface
has its own elastic constants and is characterized by an additional
constitutive law. By utilizing this interface model �this model is
the so-called interface stress model�, great effort has been recently
made to understand some unusual phenomena related to the inter-
face stress in nanocomposites �16–22�.

Most work mentioned above �2–12� on the dislocation was con-
cerned with an isolated inclusion. It is noted that most of materials

for applications are multiphase systems. Furthermore, for two-
phase materials, when the inclusion phase has finite concentration,
dislocation interacts not only with the nearest inclusion but also
with the surrounding ones. However, to thoroughly probe the
stress and strain fields based on all details of microstructure would
be prohibitive. Fortunately, there is a reasonably simplified model
to reflect the mean effect of these interactions. This model is the
so-called three-phase model introduced by Christenson and Lo
�23�. For a two-dimensional case, this model consists of three
concentric regions: the inner circular region representing the in-
clusion phase, the intermediate annular region representing the
matrix phase, and the infinitely extended outer region representing
composite phase �or effective medium�. In addition, the double
inclusion model had been proposed by Tanaka and Mori �24� for
considering the effect of the multiple inclusions.

Based on the three-phase composite cylinder model, Luo and
Chen �25� derived the stress field due to an edge dislocation lo-
cated in the intermediate matrix phase. Later, Xiao and Chen �26�
investigated the interaction between a screw dislocation and sur-
rounding circular inclusions with the above mentioned three-
phase composite cylinder model. In these papers �25,26�, all in-
terfaces are assumed to be perfectly bonded �displacement and
stress continuities are assumed to exist at interfaces�. In addition,
Wang and Shen �27� obtained an exact solution for the problem of
an edge dislocation in a three-phase composite cylinder model
with a sliding interface. In their work �27�, the inclusion phase
and the matrix phase circumferentially form homogeneous sliding
interface and the edge dislocation is located in the matrix phase.

In the current paper, a three-phase composite cylinder model is
utilized to study the interaction between screw dislocations and
surrounding circular nanoscale inclusions. The screw dislocations
are assumed to be located in the matrix phase. The boundary
condition at the interface between the nanoscale inclusion and the
matrix is modified by incorporating surface/interface stress �14�.
The explicit complete expressions of elastic fields for one dislo-
cation and two dislocations are derived. The corresponding image
forces acting on the dislocations are also given. In particular, the
motion and equilibrium positions of a single screw dislocation
near one of the inclusions are presented by numerical calculations.

2 Model and Basic Equations
The schematic diagram of the three-phase composite cylinder

model is shown in Fig. 1. The model consists of three concentric
regions: the inner circular region representing the nanoscale inclu-
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sion phase with shear modulus �1, the intermediate annular region
representing the matrix phase with shear modulus �2, and the
infinitely extended outer region representing composite phase �ef-
fective medium� with shear modulus �3. The nanoscale inclusion
is straight and infinitely extended in a direction perpendicular to
the xy-plane. The symbols R1 and R2 are the inner and outer radii
of the intermediate annular region �the matrix phase�. Several par-
allel screw dislocations, which are assumed to be straight and
infinite along the direction perpendicular to the xy-plane and suf-
fer a finite discontinuity in the displacement across the slip plane,
are located at arbitrary points in the matrix phase.

In the three-phase composite cylinder model scheme, the inter-
face stress is additionally considered at the interface �1 between
the nanoscale inclusion and the matrix. According to Gurtin and
Murdoch �14�, the elastic field within the bulk solid is described
by the differential equations of classical elasticity, while the inter-
face �1 has its own elastic constants and is characterized by an
additional constitutive law. Under the assumption that the inter-
face �1 region adheres to the bulk solid without slipping and the
body forces vanish, the equilibrium and constitutive equations for
isotropic case have been given by Sharma et al. �16�. The conven-
tional stress and displacement continuity conditions are assumed
to prevail at the interface �2 between the matrix and the effective
medium.

For the current problem, the boundary conditions on the inter-
faces can be summarized as �16,28�

w1�t� − w2�t� = 0, �rz1�t� − �rz2�t� =
1

R1

���z
0 �t�
��

, �t� = R1 �1�

w2�t� − w3�t� = 0, �rz2�t� − �rz3�t� = 0, �t� = R2 �2�

where w refers to antiplane displacement, and �rz and ��z are stress
components in polar coordinates r and �. The superscript “0”
denotes the interface region and the subscripts 1, 2, and 3 refer to
the inclusion, the matrix, and effective medium regions, respec-
tively. The symbol t denotes the points on the circular arc inter-
faces. In addition, the constitutive equation for the interface
�1��t�=R1� is given as �28�

��z
0 �t� = 2��0 − �0���z

0 �t�, �t� = R1 �3�

where ��z
0 and ��z

0 denote interfacial stress and strain, �0 is the
interfacial elastic constant, and �0 is the residual interface tension.
According to the work of Gurtin and Murdoch �14�, the dimension
of the elastic constant �0 is N/m. For a coherent interface, the
interfacial strain ��z

0 is equal to the associated tangential strain in
the abutting bulk materials. With semicoherent or incoherent in-
terfaces, additional measures of the interfacial strain are required.
In the following, we will study the case for a coherent interface.

Referring to the work of Muskhelishvili �29�, in the bulk solid,
the antiplane displacement w, and shear stresses �rz and ��z can be
written in terms of an analytical function f�z� of the complex
variable z=x+ iy as follows:

w = �f�z� + f�z��/2 �4�

�rz − i��z = �f��z�ei� �5�

where � is the shear modulus of the isotropic material, the over-
bar represents the complex conjugate, and the prime denotes the
derivative with respect to the argument z.

From Eq. �3�, the second equation in Eq. �1�, and the constitu-
tive equation of the matrix ��z2=2�2��z2, the stress boundary con-
dition on the interface �1 can be given as

�rz1�t� − �rz2�t� =
��0 − �0�

R1�2

���z2�t�
��

, �t� = R1 �6�

where �2 is the shear modulus of the matrix.
The task now is to determine the complex potentials f1�z�,

f2�z�, and f3�z� in the inclusion, the matrix, and effective medium
regions, respectively, under the boundary conditions described by
Eqs. �1�, �2�, and �6�.

3 Solutions
First, consider a single screw dislocation with Burgers vector b1

located at the point z1�z1=x1+ iy1� in the matrix. The complex
potential in the matrix region can be taken in the form �3�

f2�z� =
b1

2�i
ln�z − z0� + f20�z�, R1 � �z� � R2 �7�

where function f20�z� is holomorphic in the region R1� �z��R2.
By neglecting the constant terms denoting the rigid body displace-
ment, the analytical function f20�z� in the annular region can be
expressed as a Laurent series in the form

f20�z� = �
k=0

�

ckz
−�k+1� + �

k=0

�

dkz
k+1, R1 � �z� � R2 �8�

For the convenience of analysis, the following new analytical
functions are introduced in the corresponding regions according to
the Schwarz symmetry principle.

F2�z� = zf2��z� =
b1

2�i

z

z − z0
+ GN�z� + GP�z�, R1 � �z� � R2

�9�

F2*
�z� = F2�R1

2/z� =
b1

2�i
� z

z − z*
− 1� + ḠN�R1

2/z�

+ ḠP�R1
2/z�, R1

2/R2 � �z� � R1 �10�

F2**
�z� = F2�R2

2/z� =
b1

2�i

z

z − z**
+ ḠN�R2

2/z� + ḠP�R2
2/z�

R2 � �z� � R2
2/R1 �11�

where z*=R1
2 /z1, z**=R2

2 /z1, GN�z�=−�k=0
� �k+1�ckz

−�k+1�, and
GP�z�=�k=0

� �k+1�dkz
�k+1�.

According to the equilibrium condition of the interface �2 be-
tween the matrix and the effective medium, the analytical function
F3�z� in the effective medium regions is given by

F3�z� = zf3��z� =
b1

2�i
+ F30�z�, �z� 	 R2 �12�

where F30�z� is an analytical function in the effective medium
region and F30���=O�z−2�.

With a view of Eq. �12�, it is seen that

Fig. 1 Schematic diagram of screw dislocations in the three-
phase composite cylinder model
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F3*
�z� = F3�R2

2/z� = −
b1

2�i
+ F3*0�z�, �z� � R2 �13�

Obviously, F1�z�=zf1��z� is holomorphic in the region �z��R1 for
no existing singularities, and F1*�z�=F1�R1

2 /z� is holomorphic in

the region �z�	R1.
With the aid of Eqs. �4� and �5�, the displacement and stress

boundary conditions in Eq. �1� can be written as

�F1�t� + F2*
�t��+ = �F2�t� + F1*

�t��−, �t� = R1 �14�

��1F1�t� − �2F2*
�t� − F2*� �t���0 − �0�/R1�+

= ��2F2�t� − �1F1*
�t� − F2��t���

0 − �0�/R1�−, �t� = R1

�15�

where the superscripts 
 and � denote the boundary values of a
physical quantity as z approaches the interface.

By noting Eqs. �9� and �10� and according to the generalized
Liouville theorem �29�, Eqs. �14� and �15� lead to

h�z� =	F1�z� + F2*
�z� , R1

2/R2 � �z� � R1

F2�z� + F1*
�z� , R1 � �z� � R2


 �16�

g�z�

=	�1F1�z� − �2F2*
�z� − F2*� �z���0 − �0�/R1, R1

2/R2 � �z� � R1

�2F2�z� − �1F1*
�z� − F2��z���0 − �0�/R1, R1 � �z� � R2



�17�

with

h�z� =
b1

2�i
� z

z − z1
+

z

z − z*
− 1� + GP�z� + ḠP�R1

2/z� �18�

g�z� =
�2b1

2�i
� z

z − z0
−

z

z − z*
+ 1� −

b1

2�i

��0 − �0�
R1

� z

z − z1

−
z2

�z − z1�2 +
z

z − z*
−

z2

�z − z*�2� + �2�GP�z� − ḠP�R1
2/z��

−
��0 − �0�

R1
�zGP��z� + zḠP��R1

2/z�� �19�

It is found from Eqs. �16� and �17� that

F2�z� =
b1

2�i

z

z − z1
+

�1 − �2

�1 + �2

b1

2�i
� z

z − z*
− 1�

+
b1

2�i

��0 − �0�/R1

�1 + �2

zz*

�z − z*�2 + GP�z� +
�1 − �2

�1 + �2
ḠP�R1

2/z�

+
��0 − �0�

R
�zGN� �z� − zḠP��R1

2/z��, R1 � �z� � R2 �20�

The displacement and stress boundary conditions in Eq. �2� can be
expressed as

�F3�t� + F2**
�t��+ = �F2�t� + F3*

�t��−, �t� = R2 �21�

��3F3�t� − �2F2**
�t��+ = ��2F2�t� − �3F3*

�t��−, �t� = R2

�22�
Similarly, following Muskhelishvili �29� and considering Eqs.

�9� and �11�–�13�, the solutions of Eqs. �21� and �22� are explicitly
derived as

T�z� =	F2�z� + F3*
�z� , R1 � �z� � R2

F3�z� + F2**
�z� , R2 � �z� � R2

2/R1

 �23�

��z� =	�2F2�z� − �3F3*
�z� , R1 � �z� � R2

�3F3�z� − �2F2**
�z� , R2 � �z� � R2

2/R1

 �24�

with

T�z� =
b1

2�i
� z

z − z1
+

z

z − z**
− 1� + GN�z� + ḠN�R2

2/z� �25�

��z� =
�2b1

2�i
� z

z − z1
+

z

z − z**
+

�3

�2
� + �2GN�z� − �2ḠN�R2

2/z�

�26�

From Eqs. �23� and �24�, we obtain the analytical function F2�z�,

F2�z� =
b1

2�i

z

z − z1
+

�3 − �2

�3 + �2

b1

2�i

z

z − z**
+ GN�z�

+
�3 − �2

�3 + �2
ḠN�R2

2/z�, R1 � �z� � R2 �27�

In order to simultaneously satisfy all of the boundary conditions
on the interfaces �1 and �, the analytical function F2�z� expressed
by Eqs. �20� and �27� must be compatible to each other �26�.
Physically, the compatibility conditions F2�z� mean that the stress
field and displacement field in the intermediate matrix �R1� �z�
�R2� are unique. From Eqs. �20� and �27� as well as Eq. �9�, we
obtain the following equation to determine the unknown coeffi-
cients ck and dk.

b1

2�i

�2 − �3

�3 + �2
�
k=0

� � z

z**
�k+1

− �
k=0

�

�1 + k�ckz
−�1+k�

+
�2 − �3

�3 + �2
�
k=0

�

�1 + k�c̄kR2
−2�1+k�z�1+k�

=
b1

2�i

�1 − �2

�1 + �2
�
k=0

� � z*

z
�k+1

+ �
k=0

�

�1 + k�dkz
�1+k�

+
�1 − �2

�1 + �2
�
k=0

�

�1 + k�d̄kR1
2�1+k�z−�1+k� +

b1

2�i

��0 − �0�/R1

�1 + �2


�
k=0

�

�1 + k�� z*

z
�k+1

+
��0 − �0�/R1

�1 + �2
��

k=0

�

�1 + k�2ckz
−�1+k�

+ �
k=0

�

�1 + k�2d̄kR1
2�1+k�z−�1+k�� �28�

Comparison of the coefficient of the same power terms yields

ck =
b1

2�i

�2 − �1 − �1 + k���0 − �0�/R1

1 + k

��2 + �3��R1
2R2

2/z̄1��k+1� + ��3 − �2�R1
2�1+k�z1

�k+1�

M
�29�
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dk =
b1

2�i

�2 − �3

1 + k

��1 + �2 + �1 + k���0 − �0�/R1�z̄1
�k+1� + ��1 − �2 + �1 + k���0 − �0�/R1��R1

2/z1��k+1�

M
�30�

where M = ��3−�2���2−�1− �1+k���0−�0� /R1�R1
2�k+1�+ ��2

+�3���2+�1+ �1+k���0−�0� /R1�R2
2�k+1�.

By substituting Eqs. �29� and �30� into Eq. �9�, we obtain the
solution of the analytical function F2�z�,

F2�z� =
b1

2�i

z

z − z1
− �

k=0

�

�k + 1�ckz
−�k+1� + �

k=0

�

�k + 1�dkz
�k+1�

�31�

The solutions of the analytical functions F1�z� and F3�z� can be
determined by Eqs. �16� and �17� as well as Eqs. �23� and �24�.

Finally, by considering the relations f j�z�=
�Fj�z� /z�dz �j
=1,2 ,3�, the complete solutions of stress and displacement fields
for the current problem can be obtained by means of Eqs. �4� and
�5�. Here, the explicit expressions of complex potentials f1�z�,
f2�z�, and f3�z� are given as follows:

f1�z� =
b1

2�i

2�2

�1 + �2
ln�z − z1� +

2�2

�1 + �2
�
k=0

�

dkz
�k+1�

−
b1

2�i

��0 − �0�
R1��1 + �2��2 ln�z − z1� +

z1

z − z1
�

−
��0 − �0�

R1��1 + �2���
k=0

�

�k + 1�dkz
�k+1�

− �
k=0

�
1

k + 3
ckR1

−2�k+2�z�k+3�� �32�

f2�z� =
b1

2�i
ln�z − z1� + �

k=0

�

ckz
−�k+1� + �

k=0

�

dkz
�k+1� �33�

f3�z� =
b1

2�i

2�2

�3 + �2
ln�z − z1� +

b1

2�i

�3 − �2

�3 + �2
+

2�2

�3 + �2
�
k=0

�

ckz
−�k+1�

�34�
It is worth noting that from Eqs. �32�–�34�, when the interface

stresses vanish ��0=�0=0�, the solutions of complex potentials
f j�z� are in agreement with the results of Xiao and Chen �26�.
Here, we omit details for saving space. In addition, if we take
�3=0, the new solutions can be obtained for the two-phase cylin-
der model, which consists of a cylindrical nanoscale inclusion and
a matrix with finite thickness.

4 Image Forces on Screw Dislocations
The image forces exerted on dislocations will be calculated in

this section, which may play an important role in understanding
the mobility and so-called trapping mechanism of the dislocations.
According to the Peach–Koehler formula, the image force acting
on a screw dislocation at the point z1 can be obtained �11�

fx − ify = ib1���xz2�z1� − i��yz2�z1�� �35�

where fx and fy are the force components in the x-axis and y-axis
directions, respectively, and ��xz2�z1� and ��yz2�z1� denote the per-
turbation stress components at the dislocation point, which can be
derived by subtracting those attributions to the dislocation in the
corresponding infinite homogeneous medium from the current ob-
tained stresses, then taking the limit as z approaches z1. Referring
to the work of Lee �30�, the explicit expression of the image force
acting on the screw dislocation for the present problem can be
written as

fx − ify =
�2b1

2��2 − �3�
2� �

k=0

�
��1 + �2 + �1 + k���0 − �0�/R1�z̄1

�k+1� + ��1 − �2 + �1 + k���0 − �0�/R1��R1
2/z1��k+1�

z1
−kM

−
�2b1

2

2� �
k=0

�
��2 − �1 − �1 + k���0 − �0�/R1����2 + �3��R1

2R2
2/z̄1��k+1� + ��3 − �2�R1

2�1+k�z1
�k+1��

z1
�k+2�M

�36�

where M = ��3−�2���2−�1− �1+k���0−�0� /R1�R1
2�k+1�+ ��2+�3���2+�1+ �1+k���0−�0� /R1�R2

2�k+1�.
If we take �3=0, the new solution of the image force acting on the dislocation is derived for the problem of a screw dislocation in

the two-phase cylinder model, which consists of a cylindrical nanoscale inclusion and a matrix with finite thickness.

fx − ify =
�2b1

2

2� �
k=0

�
��1 + �2 + �1 + k���0 − �0�/R1�z̄1

�k+1� + ��1 − �2 + �1 + k���0 − �0�/R1��R1
2/z1��k+1�

z1
−km

−
�2b1

2

2� �
k=0

�
��2 − �1 − �1 + k���0 − �0�/R1���R1

2R2
2/z̄1��k+1� − R1

2�1+k�z1
�k+1��

z1
�k+2�m

�37�
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where m= ��2+�1+ �1+k���0−�0� /R1�R2
2�k+1�− ��2−�1− �1+k�


��0−�0� /R1�R1
2�k+1�.

The image forces for the problem of multiple parallel screw
dislocations located at arbitrary points in the matrix phase can be
derived by the superposition method. Consider the case that two

parallel screw dislocations with Burgers vectors b1 and b2 are
located in points z1 and z2, respectively. The total image force on
the dislocation z1 is the summation of Eq. �35� and the image
force exerted on the dislocation z1 produced by the dislocation z2.
The result is

fx − ify =
�2b1

2��2 − �3�
2� �

k=0

�
��1 + �2 + �1 + k���0 − �0�/R1�z̄1

�k+1� + ��1 − �2 + �1 + k���0 − �0�/R1��R1
2/z1��k+1�

z1
−kM

−
�2b1

2

2� �
k=0

�
��2 − �1 − �1 + k���0 − �0�/R1����2 + �3��R1

2R2
2/z̄1��k+1� + ��3 − �2�R1

2�1+k�z1
�k+1��

z1
�k+2�M

+
�2b1b2

2��z1 − z2�

+
�2b1b2��2 − �3�

2� �
k=0

�
��1 + �2 + �1 + k���0 − �0�/R1�z̄2

�k+1� + ��1 − �2 + �1 + k���0 − �0�/R1��R1
2/z2��k+1�

z1
−kM

−
�2b1b2

2� �
k=0

�
��2 − �1 − �1 + k���0 − �0�/R1����2 + �3��R1

2R2
2/z̄2��k+1� + ��3 − �2�R1

2�1+k�z2
�k+1��

z1
�k+2�M

�38�

5 Numerical Examples and Discussion
Having the expressions of the image forces given in Eqs.

�36�–�38�, the influence of various parameters �the material elastic
dissimilarity, the interface stress, and the location of the screw
dislocation� upon image force acting on the screw dislocation can
be evaluated in detail. The effect of the material mismatch and the
dislocation location has been considered by Xiao and Chen �26�;
thus, we will mainly focus on the impact of the interface stress on
image force as the dislocation near the inclusion.

In this section, we utilize Eq. �36� to illustrate the influence of
the interface stress upon the image force exerted on the disloca-
tion when a single screw dislocation is located in the matrix.
Without a loss of generality, we suppose that the screw dislocation
lies at the point x1 on the x-axis �R1�x1�R2 is a real number�
and the residual interface tension vanishes ��0=0�. In this case,
fy =0 and the component of the normalized image force along the
x-axis direction is defined as fx0=2�R1fx /�2b1

2. For the descrip-
tion of the interface, one needs the elastic constant �0. Unfortu-
nately, it is unavailable in the literature. Miller and Shenoy �13�
have computed the free surface for aluminum and silicon by the
embedded atom method �EAM�, and indicated that the surface
properties can be either positive or negative, depending on the

crystallographic orientation. Although the interface and free sur-
face are not strictly the same, they have similar physical nature
�free surface can be as some special interface� �19�. Since we
cannot obtain datum of the interface constant �0, as a makeshift,
in this paper, we assume that the absolute value of the interface
constant is nearly the value of the surface constant. In addition,
we define the relative shear modulus �=�1 /�2 and �=�3 /�2, the
intrinsic length �=�0 /�2, the relative location of the dislocation
�=x1 /R1, and the relative volume fraction of nanowires �
=R2 /R1. According to the results in Ref. 13, the absolute value of
the intrinsic length �=�0 /�2 is nearly 0.1 nm.

In Figs. 2 and 3, we illustrate the variation of the values of fx0
with respect to the parameter � for the selected material constants
and the intrinsic length � ��=2 and R1=15 nm�. It is observed
from Figs. 2 and 3 that, if the distance of the screw dislocation
with nanoscale inclusion is biggish, the screw dislocation will be
attracted to the effective medium �composite phase� when the ef-
fective medium is softer than the matrix ��3��2�. The magnitude
of the attractive force will be higher when the dislocation is closer
to the interface between the matrix and the effective medium. On

Fig. 2 Normalized force fx0 versus � for �=0.9, �=2, and R1
=15 nm

Fig. 3 Normalized force fx0 versus � for �=1.1, �=2, and R1
=15 nm
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the other hand, the effective medium will repel the screw disloca-
tion when the effective medium is stiffer than the matrix ��3
	�2�.

It is seen from Fig. 2 that, when the inclusion is stiffer than the
matrix ��1	�2� and the effective medium is softer than the ma-
trix ��3��2�, there is not an equilibrium point for the screw
dislocation in the matrix if the interface stress vanishes ��=0�,
and there exists an unstable equilibrium point as the dislocation
near the inclusion if the negative interface stress is considered
��=−0.1 nm�. Additionally, when the inclusion and the effective
medium are all softer than the matrix ��1��2 and �3��2�, there
is an unstable equilibrium point in the matrix if the interface stress
vanishes ��=0�, and there are two equilibrium points in the matrix
as the dislocation near the inclusion if the positive interface stress
is considered ��=0.1 nm�. The point that is closer to inclusion is
stable and another point is unstable. The result indicates that a
new stable equilibrium position for the screw dislocation near the
inclusion is discovered due to consideration of the interface stress,
which has never been observed in previous studies. Figure 3 in-
dicates that, when the inclusion and the effective medium are all
stiffer than the matrix ��1	�2 and �3	�2�, there is a stable
equilibrium point if the interface stress vanishes ��=0�, and there
are two equilibrium points for the dislocation in the matrix if the
negative interface stress is considered ��=−0.1 nm�. The point
that is closer to inclusion is unstable and another point is stable.
The result shows that a new unstable equilibrium position for the
screw dislocation near the inclusion can exist by considering the
interface stress. In addition, when the inclusion is softer than the
matrix ��1��2� and the effective medium is stiffer than the ma-
trix ��3	�2�, no equilibrium point is available if the interface
stress vanishes ��=0� and a stable equilibrium point for the dis-
location in the matrix is available if the positive interface stress is
considered ��=0.1 nm�. Compared to the classical solution ��
=0�, we can obtain that more equilibrium positions of the dislo-
cation may be available when the dislocation is near the nanoscale
inclusion with interface stress. On the other hand, the mobility of
the dislocation in the matrix will become more complex than the
classical case.

The variation of the normalized image force fx0 versus the ra-
dius R1 is depicted in Fig. 4 with the selected material constants
and the intrinsic length � for �=2 and �=1.05. It can be seen that
the positive value of � causes the interface to repel the screw
dislocation while the negative value of � causes the interface to
attract the dislocation. An additional repulsive force or attractive
force will act on the screw dislocation by considering the interface
stress, which causes the total image force to increase or decrease.
This is a physical phenomenon unpredicted by the classical elas-
ticity without considering the effect of the interface stress. The
additional force acting on the dislocation increases with the de-

crease in the inclusion radius, and the size dependence becomes
significant when the radius of the inclusion is very small. It is also
found that the magnitude of the image force exerted on the screw
dislocation produced by multiplying inclusion ��=�3 /�2=1.1� is
smaller than that produced by a single inclusion ��=1�. The nor-
malized image force fx0 as a function of � with different values of
R1 is shown in Fig. 5 for �=1.2, �=1.1, �=1.06, and �=2. It is
seen that the larger the absolute value of the intrinsic length � or
the smaller the radius of the inclusion R1, the larger the effect of
the interface stress upon the image force. An interesting result is
that, when the radius of the inclusion is near 10 nm, the stiff
inclusion first repels the screw dislocation, and then attracts it
with the increment of the negative value of �. Furthermore, the
point where the dislocation is located is an equilibrium position of
the screw dislocation when the value of � reaches a certain value.

In Fig. 6, the normalized image force fx0 is plotted versus �
=R2 /R1 with the selected material constants and the intrinsic
length � for R1=15 nm and �=1.05. From Fig. 6, we found that,
when the value of �=R2 /R1 continuously increases, the solution
given by this model is slowly close to that derived from the two-
phase model. Nevertheless, the repulsive force acting on the dis-
location due to the presence of the stiff inclusion will decrease
with the increment of the number of inclusions. The result shows
that, when the dislocation approaches the inclusion, the total value
of the repulsive force will become smaller by considering the
effect of the surrounding inclusions. It is of theoretical interest to
examine the influence of the elastic property of the effective me-
dium. In Fig. 7, we illustrate the fx0 versus �=�3 /�2 with differ-
ent values of � for R1=15 nm, �=2, �=0.1 nm, and �=1.5. It is
shown that, when the rigidity of the effective medium is low, the

Fig. 4 Normalized force fx0 versus R1 for �=2 and �=1.05 Fig. 5 Normalized force fx0 versus � for �=2, �=1.06, �=1.2,
and �=1.1

Fig. 6 Normalized force fx0 versus � for R1=15 nm, and �
=1.05

041019-6 / Vol. 75, JULY 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



dislocation tends to be repelled by the stiff inclusion; when the
rigidity of the effective medium becomes hard, the dislocation
will be repelled by the effective medium. There exists a critical
value of � to alter the direction of the image force. The critical
value of � will increase with the decrease in the distance between
the dislocation and the inclusion.

In the following, we will illustrate the effect of the closer par-
allel screw dislocations. Consider the case that two parallel screw
dislocations with Burgers vectors b1 and b2 are located in points
z1�z1=x1� and z2= �z2=rei��, respectively. The relative location of
the dislocation z2 relative to the nanoscale inclusion is defined as
�=r /R1. The normalized image force fx0 with different values of
b2 as a function of � is depicted in Fig. 8 for �=20 deg �R1
=15 nm, �=1.2, �=1.1, �=1.8, �=2, and �=−0.1 nm�. It can be
seen that, when � goes up to a certain value, the direction of the
image force acting on the screw dislocation z1 produced by the
dislocation z2 can be changed for cases of both b2=b1 and
b2=−b1. The unstable equilibrium point of the dislocation z1 near
the inclusion may be disappeared due to the effect of the nearby
screw dislocation z2. However, for the case of b2=b1, a new stable
equilibrium point of the dislocation z1 near the effective medium
may be produced, and there also exist two equilibrium points
when the dislocation z1 approaches the inclusion from the inter-
face between the matrix and the effective medium. On the other
hand, for the case of b2=−b1, there is only one equilibrium point
of the dislocation z1 in the middle region of the matrix, and no
equilibrium point is available when the dislocation is closer to the
interface between the matrix and the effective medium. The nor-
malized image force fx0 with different values of b2 as a function
of � is depicted in Fig. 9 for �=1.2 �R1=15 nm, �=1.2, �=1.1,

�=1.8, �=2, and �=−0.1 nm�. Figure 9 shows that the direction
of the total image force exerted on the dislocation z1 will be al-
tered when the absolute value of the angle � reaches a certain
value for cases of both b2=b1 and b2=−b1. Furthermore, the point
z1 in the matrix is an equilibrium point of the screw dislocation
along the x-axis direction. The effect of the dislocation z2 on the
image force acting on the dislocation z1 is very obvious when two
screw dislocations are all located on the x-axis. In addition, the
effect of the dislocation z2 will vanish when the absolute value of
the angle � goes up to the same critical value for cases of both
b2=b1 and b2=−b1.

6 Conclusions
The interaction between screw dislocations and multiple nanos-

cale inclusions with interface stresses is investigated by using a
three-phase composite cylinder model. The explicit expressions of
stress and displacement fields and image forces on the disloca-
tions for the current problem are derived by means of the complex
variable method. The image force and the equilibrium position of
a single screw dislocation near one of the inclusions are presented
by numerical calculations and discussed in detail. Some conclu-
sions are summarized as follows. �1� When the inclusion and the
effective medium are all softer than the matrix ��1��2 and �3
��2� and the positive interface stress is considered, a new stable
equilibrium position for the screw dislocation in the matrix is
discovered. When the inclusion and the effective medium are all
stiffer than the matrix ��1	�2 and �3	�2� and the negative
interface stress is considered, a new unstable equilibrium position
can exist. Furthermore, under certain conditions, there always ex-
ists a new stable or unstable equilibrium position of the disloca-
tion near the nanoscale inclusion for different material combina-
tions, which has never been observed in previous studies �without
considering the interface stress�. �2� The additional force exerted
on the screw dislocation produced by considering the interface
stress increases with the decrease in radius of the nanoscale inclu-
sion, and the size dependence becomes significant when the radius
is very small. �3� The magnitude of the so-called repulsive/
attractive force acting on the screw dislocation produced by mul-
tiple nanoscale inclusions �three-phase model� is always smaller
than that produced by a single inclusion �two-phase model�. �4�
The equilibrium positions of the appointed screw dislocation are
strongly influenced by other parallel screw dislocations.
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Post-buckling and Snap-Through
Behavior of Inclined Slender
Beams
Based on the geometrical nonlinear theory of large deflection elastic beams, the govern-
ing differential equations of post-buckling behavior of clamped-clamped inclined beams
subjected to combined forces are established. By using the implicit compatibility condi-
tions to solve the nonlinear statically indeterminate problems of elastic beams, the
strongly nonlinear equations formulated in terms of elliptic integrals are directly solved
in the numerical sense. When the applied force exceeds the critical value, the numerical
simulation shows that the inclined beam snaps to the other equilibrium position auto-
matically. It is in the snap-through process that the accurate configurations of the post-
buckling inclined beam with different angles are presented, and it is found that the
nonlinear stiffness decreases as the midpoint displacement is increased according to our
systematical analysis of the inward relations of different buckling modes. The numerical
results are in good agreement with those obtained in the experiments.
�DOI: 10.1115/1.2870953�

Keywords: geometrical nonlinearity, snap through, nonlinear stiffness, post-buckling,
large deflection

1 Introduction
In microelectromechanical system �MEMS� fields, a need arises

in engineering practice to predict accurately the nonlinear re-
sponse of slender post-buckling beams, especially the nonlinear
transverse stiffness. The bistability of the post-buckling beams is
excellent in reducing power consumption of microdevices or mi-
crosystems. However, the major difficulty in analyzing the post-
buckling and snap-through response is the intractability of the
geometric nonlinear control equations of large deflection beams.
Enikov et al. �1� designed a V-shaped thermal microacturator with
buckling beams. Yet, the precise computation model for the buck-
ling beam based on the large deflection theory has not been built.
Seide �2� discussed the accuracy of some numerical methods for
column buckling. Mau �3� studied the stability of the post-
buckling paths of columns with discrete spring supports. Though
Fang and Wickert �4� studied the static deformation of microma-
chined beams under in-plane compressive stress, they could not
trace the post-buckling paths by making use of the linearized gov-
erning differential equation. Wang �5� presented the complete
post-buckling and large deformations of an elastica rod, one end
fixed and one end pinned. Hartono �6,7� applied the elastica solu-
tion to describe the large displacement behavior of a column with
lateral bracing at the midheight and obtained the post-buckling
configurations of the deformed column under the axial loading.
Coffin and Bloom �8� analyzed the post-buckling response of an
elastic and hygrothermal beam fully restrained against axial ex-
pansion. Li and Zhou �9� studied the post-buckling behavior of a
hinge-fixed beam under evenly distributed follower forces. The
post-buckling analysis of the easily fabricated MEMS beams with
both ends fixed is really important in the design of microstruc-
tures. To solve the post-buckling problems of small deformation
beams, the predominant approach is to use a nonlinear finite ele-
ment �FE� model, or to resort to a linear analytical model based on
the small deflection theory, which agrees only with experiments in

a relatively limited range of loadings. The apex displacement of
the bent beam can only be reduced in nearly linear proportion to
the vertical force in the design of microactuators �10,11�, and the
error is large compared with the experimental results. This lack of
a simple and yet accurate tool for analyzing the post-buckling bent
beams results in a poor initial “guess” of the desired geometry and
multidesign iterations, thus being unable to provide an insight into
the deformation problems. Therefore, the large deflection buckling
theory is needed to solve the intractability of the geometric non-
linear control equations of the bent beam.

Aiming at designing a novel MEMS threshold acceleration
switch with post-buckling beams, this paper studies the post-
buckling behavior in the snap-through process of the large deflec-
tion inclined beam with both ends fixed, and establishes the non-
linear governing equations of the post-buckling beam under
combined forces acting on the ending point. These ordinary non-
linear differential equations consist of the boundary-value condi-
tions, in which six unknown functions are contained and the
length of the deformed beam is considered as one of the unknown
functions. By using the implicit compatibility conditions to ex-
press the nonlinear statically indeterminate problems of elastic
beams, the strongly nonlinear equations formulated in terms of
elliptic integrals are directly solved in the numerical sense.
Through an incremental displacement method, we can obtain the
equilibrium paths of the deformed beam in the snap-through pro-
cess, and describe explicitly the nonlinear force-and-displacement
relations of the central point of the bent-beam structure. For fur-
ther applications of the nonlinear stiffness of the post-buckling
beams, an electronic testing device is designed. The simulation
results are in good agreement with those by experiments.

2 Governing Equations of Post-buckling Beams

2.1 Nonlinear Structure Supported by Inclined Beams. A
typical bent-beam structure is shown in Figs. 1 and 2. The struc-
ture consists of one inertial mass supported by two inclined beams
with length L, both ends fixed. The central mass is constrained to
move vertically. When a vertical force Fv is applied on the central
node, the constraint beam is subjected to the compression and
lateral bending moments, thus resulting in the symmetric response
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of the beam. When the vertical force Fv exceeds the critical buck-
ling load, the inclined beam with initial angle � buckles, and then
snaps to the next equilibrium state. During the whole snap-
through process, the structural stiffness varies with the displace-
ments of the central node. As we all know, the nonlinear stiffness
of the inclined beam plays a crucial role in the action of the
nonlinear system; therefore, it is of great importance to study the
post-buckling behavior of the inclined beam, which experiences
large deflections, and to show the equilibrium paths during the
snap-through process.

2.2 Governing Equations of the Post-buckling Beam.
Based on the symmetry of the structure, the left half span of the
bent beam with reaction forces is analyzed, and the coordinate
system used is shown in Fig. 3. When the right ending point of the
beam moves vertically, the beam buckles and the configuration
becomes asymmetric or symmetric depending on the number of
inflection points along the deformed beam. The moment at the
inflection point is zero. By using the geometric symmetry, a coor-
dinate system is constructed accordingly. Let a Cartesian coordi-
nate system �x ,y� be located at the left fixed end, and s stands for
the arclength. Then, we can get these geometrical relations of the
right ending point �Eq. �1�� and the bending moment at any sec-
tion along the beam �Eq. �2�� as follows:

ym = � cos �, xm = L − u = L − � sin � �1�

M = − R��y + ym�cos � + �xm − x�sin �� + Ml �2�

Here, �, xm, and ym represent the vertical displacement, longitude
deflection, and transverse deflection of the right ending point, re-
spectively. � is the angle of the elastic force R, � the angle of any
section along the buckled beam, and � the initial angle of the
inclined beam. M0 and Ml stand for the bending moments at the
two ending points, respectively. P and F, which can be expressed
as P=R cos � and F=R sin �, are axial and transverse compo-
nents of the elastic force R, respectively.

Then, from Euler–Bernoulli moment-curvature relationship

M = EI
d�

ds
�3�

the governing equation of the post-buckling beam with both ends
fixed is obtained from Eqs. �2� and �3�,

d�

ds
=

− R��y + ym�cos � + �xm − x�sin �� + Ml

EI

dy

ds
= sin �

dx

ds
= cos � �4�

Upon the differentiation of s in Eq. �4�, another expression of the
governing equation can be obtained as

d2�

ds2 = −
R

EI
�cos � sin � − sin � cos �� �5�

By integrating �, the relation between the moment and the elastic
force can be derived from Eq. �5� as follows:

R

EI
�cos � cos � + sin � sin �� + c =

1

2
�M

EI
�2

�6�

where c is the integration constant.
At the inflection point of the deflected beam, where �=�*, sub-

stituting M =0 in Eq. �6� results in

c = −
R

EI
cos��* − �� �7�

The boundary conditions can be written as follows:

s = L, � = 0, y = − ym, x = xm

s = 0, � = 0, y = 0, x = 0 �8�

By applying the boundary conditions to Eq. �6�, the relation be-
tween R and � is found as follows:

c =
1

2
�Ml

EI
�2

−
R cos �

EI
=

1

2
�M0

EI
�2

−
R cos �

EI
�9�

Then, the moment at any section of the beam in different buckling
modes is obtained by substituting Eq. �7� into Eq. �6�,

M = � �R cos�� − �� − R cos��* − ��
EI

�1/2

�10�

where � stands for the direction of the moment.
When the applied vertical force exceeds the critical buckling

value, the inclined beam buckles and the second bifurcation of the
post-buckling beam occurs. The phenomenon such as snap
through, which includes the transition between the asymmetric
and the symmetric buckling modes, can be described by the post-
buckling analysis.

2.2.1 Asymmetric Mode (Odd Solution). Based on the deflec-
tion configuration, which has odd inflection points as shown in
Fig. 2, and the concavo-convex relations of the curve, we can

Fig. 1 Original state of the bent-beam structure

Fig. 2 Post-buckling state of the bent-beam structure

Fig. 3 Deformation of post-buckling beam under a combined
load
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conclude that the directions of the moments at the two ending
points of the beam are opposite. Therefore, the relation of the
moments on the two ending points of the inclined beam can be
obtained from Eq. �9�,

M0 = − Ml �11�
The moment at the right ending point can be obtained from Eqs.

�2� and �11�,

Ml =
R

2
�ym cos � + xm sin �� �12�

By substituting Eq. �7� into Eq. �9�, the other expression of the
moment at the right ending point can be deduced as

Ml
2 = 2REI�cos � − cos��* − ��� �13�

Upon the substitution of Eq. �12� into Eq. �13�, the following
relation between �* and R can be obtained:

cos��* − �� = −
R

8EI
�ym cos � + xm sin ��2 + cos � �14�

2.2.2 Symmetric Mode (Even Solution). Based on the deflec-
tion configuration, which has even inflection points as shown in
Fig. 2, and the symmetry of the beam configuration, we can learn
that the moments at the two ending points are in the same direc-
tion. So, the moment relation between the two ending points can
be deduced from Eq. �9�

M0 = Ml �15�

The direction angle � of the elastic force R can be derived from
Eq. �2�,

tan � =
F

P
= −

ym

xm
�16�

From Eq. �13�, the moment at the right ending point can be
written as

Ml = �2REI�cos � − cos��* − ����1/2 �17�
The condition �Eq. �8�� is self-explanatory and Eq. �1� indicates

the fact that the right ending point of the beam can move only in
the vertical direction, as shown in Fig. 2. With a given tip dis-
placement � �controlling parameter� and the three constraint con-
ditions �Eqs. �1�, �12�, and �17��, the nonlinear differential equa-
tion �Eq. �4�� cannot be solved to determine the displacement
variables �x ,y� and the inclination �. Therefore, another two con-
straint conditions are necessary to calculate the elastic force R and
its direction angle � to settle the strong nonlinear statically inde-
terminate problems.

3 Nonlinear Constraint Conditions of the Post-
buckling Beam

3.1 Constraint Condition on the Beam Length. From Eq.
�10�, the moment-curvature equation of the buckled beam can be
written as

d�

ds
= � �R cos�� − �� − R cos��* − ��

EI
�1/2

�18�

where the symbol � shows the curve direction of the statically
indeterminate beam.

Here, set n as the number of the inflection points. When n is
odd, the configuration becomes asymmetric; when n is even, the
configuration becomes symmetric. The deflection curve can be
divided into 2n parts by the inflection points and the peak points,
and then the constraint condition on the beam length can be ob-
tained by integrating the curved coordinate s in Eq. �18�.

Upon substituting the following parameters,

� = � − �, � = �* − �, sin
�

2
= sin

�

2
sin � �19�

into Eq. �18�, we can get the expression for the beam length.

3.1.1 Asymmetric Modes (Odd Solution). When n is odd, the
integration of Eq. �18� results in

L =�EI

2R�
k=1

2n 	
�* sin���k−1�/2�	�

�* sin�k	/2� sin� k + 2

2
	� − sin� k + 1

2
	�

�cos�� − �� − cos��* − ���1/2
d�

= − 2n�EI

2R	
0

�*
d�

�cos�� − �� − cos��* − ���1/2
�20�

The constraint condition on the beam length is obtained by
substituting Eq. �19� into Eq. �20�,

L = − 2n�EI

R 	
�0

	/2
d�

�1 − sin2 �

2
sin2 ��1/2 �21�

When �=0, from Eq. �19�, an expression for 
0 can be de-
duced,

sin �0 = −
sin��/2�
sin��/2�

�22�

3.1.2 Symmetric Mode (Even Solution). When n is even, the
beam length can be calculated by the same method, which has
been used in the asymmetric mode.

L =�EI

2R�
k=1

2n 	
�* sin���k−1�/2�	�

�* sin�k	/2� sin� k + 2

2
	� − sin� k + 1

2
	�

�cos�� − �� − cos��* − ���1/2
d�

= n�EI

R 	
0

�
d�

�sin2 �

2
− sin2 �

2
�1/2

= 2n�EI

R 	
0

	/2
d�

�1 − sin2 �

2
sin2 ��1/2 �23�

Therefore, by combining Eqs. �21� and �23�, the general form
of the constraint condition on the beam length can be obtained,

L = 2n�− 1�n�EI

R 	
�0

	/2
1

�1 − sin2 �

2
sin2 ��1/2d� �24�

Here, when n is even, 
0 is equal to zero; when n is odd, the
value of 
0 can be determined by Eq. �22�.

3.2 Constraint Condition on Displacement. From Eqs. �4�
and �18�, the displacement �x ,y� at any section of the deformed
beam can be obtained as follows:

x =	
0

l

cos �ds

y =	
0

l

sin �ds �25�

By integrating the equations above, the longitude and transver-
sal displacements �xm ,ym� of the right ending point can be ob-
tained as follows:
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xm = n�− 1�n�2EI

R 	
�0

	/2
cos�� + ��

�1 − sin2 �

2
sin2 ��1/2d�

ym = n�− 1�n�2EI

R 	
�0

	/2
sin�� + ��

�1 − sin2 �

2
sin2 ��1/2d� �26�

Then, the relationship between the longitude and transverse dis-
placements of the right ending point can be simplified as

xm = n�− 1�n�2EI

R
�1/2

�I2 cos � − I1 sin ��

ym = n�− 1�n�2EI

R
�1/2

�I1 cos � + I2 sin �� �27�

where

I1 = 2�2 sin
�

2	
�0

	/2

sin �d� = 2�2sin
�

2
cos �0

I2 = �2	
�0

	/2 2 cos2 �

2
− 1

�1 − sin2 �

2
sin2 ��1/2d�

= 2�2	
�0

	/2 �1 − sin2 �

2
sin2 ��1/2

d�

− �2	
�0

	/2
1

�1 − sin2 �

2
sin2 ��1/2d�

When n is odd, the relation between � and the displacements of
the right ending point can be written from Eqs. �14�, �19�, and
�27� as follows:

tan � =
xm

ym
�28�

The variables such as � and R in Eq. �27� are unknowns; so, the
displacement constraint relation of the right ending point can be
obtained by solving Eq. �27�,

xm cos � − ym sin � = 2n�EI

2R
I2 �29�

Then, the constraint equation for Eq. �4� can be explicitly found
by substituting I2 into Eq. �29�,

1

L	
�0

	/2
d�

�1 − sin2 �

2
sin2 ��1/2

=
2

xm cos � − ym sin � + L	
�0

	/2 �1 − sin2 �

2
sin2 ��1/2

d�

�30�
The noncomplete elliptic integrals of the first kind can be ex-

pressed as the power series to simplify the nonlinear post-
buckling governing equation �Eq. �4��

	
0

	/2
d�

�1 − sin2 �

2
sin2 ��1/2

=
	

2
1 + �
n=1

� � �2n − 1�!!
�2n�!! �2�sin2 �

2
�n


�	0
�0

d�

�1 − sin2 �

2
sin2 ��1/2

= �0 + �
n=1

�
�2n − 1�!!

�2n�!! �sin2 �

2
�n	

0

�0

sin2n �d� �31�

where

	
0

�0

sin2n �d� = −
�2n�!

22n�n!�2�cos �0�
k=0

n−1
22k�k!�2 sin2k+1 �0

�2k + 1�!
− �0�

In other words, with a given displacement �, the moment Ml
can be obtained from Eqs. �12� and �17� and then, the elastic force
R and its direction angle � can be calculated by combining Eqs.
�16�, �24�, �28�, and �30�. Finally, the strong nonlinear equation
�Eq. �4�� can be solved numerically.

4 Analysis of Post-buckling Elastic Force
According to the minimal energy principle, the beam will find

the path with the least energy such as the first and second buckling
modes in the snap-through process. That is to say, there will be
one or two inflection points along the deflection curve of the post-
buckling beam under the combined forces.

Based on the geometric relations and force equilibrium relation-
ship, the vertical elastic force Fv can be written as

Fv = R�cos � sin � + sin � cos �� �32�

where the elastic force can be expressed as R=2EI�I1 /L�2, which
can be calculated from Eqs. �16�, �19�, �24�, and �30�. The trans-
versal force Fv is a hidden function of the displacement of the
right ending point �.

When cos��� is less than cos��*−��, the second bifurcation
occurs, and then the buckled beam snaps from the symmetric
mode to the asymmetric mode. The formula for calculating �
changes from Eq. �16� to Eq. �28�, and the moment expression
also changes from Eq. �17� to Eq. �12�. Therefore, it is obvious
that the snap-through characteristic of the post-buckling beam can
be described by the relation between the elastic force and the
vertical displacement.

5 Numerical Simulation and Experiments
Based on the theoretical derivation mentioned above, the struc-

ture parameters given below are used in simulating the post-
buckling behavior of the inclined beam with both ends fixed.

By using the conditions expressed by Eqs. �12�, �17�, �16�, �24�,
�28�, and �30�, and a given �, the variables of Ml, R, and � can be
determined. Now, the modified numerical method of incremental
displacement is adopted to solve the governing equation of the
post-buckling beam. During the numerical simulation procedure,
the variable n mentioned above is found to fulfill the nonlinear
constraint conditions on the beam length �as in Eq. �24��. Then,
with the inflection point number n, the nonlinear stiffness and the
large deflection equilibrium paths during the post-buckling and
snap-through process are presented in the following.

To validate the theoretic derivation and the further applications
of post-buckling beams, an electronic testing device is designed as
shown in Fig. 6, and a series of experiments is conducted to verify
the nonlinear stiffness analytically calculated in this paper. As
shown in Fig. 6, the post-buckling testing device consists of a
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displacement sensor, a force sensor, a supporting platform, and
two output screens. The inclined Be-bronze beams are fixed on the
post-buckling platform when the vertical force is applied to the
fixed central point of the structure. When the central point moves
vertically, the values of the central point displacement and the
corresponding reaction force can be sensed and displayed on the
two different screens, respectively. The parameters of the beam
structure are identical to those in Table 1.

Figures 4 and 5 show the configurations of post-buckling beams
with different initial angles � when the beam tip moves vertically
under the applied forces. To facilitate the analytical process, it is
necessary to point out that the beam tips shown in both Figs. 4 and
5 correspond to the fixed central point of the testing structure in
Fig. 6. When the vertical force applied is zero or less than the
critical buckling value, the beam stays in the original state. When
the vertical force exceeds the critical buckling value, the beam
experiences instability and produces two inflection points, as
shown in Figs. 4 and 5. As the vertical displacement of the beam

tip increases, the configuration of the beam becomes asymmetric;
meanwhile, the inflection point number becomes odd correspond-
ingly. These configurations of the post-buckling beams shown in
Figs. 3 and 4 are almost the same as those obtained by the experi-
ments.

Figures 7 and 8 show that the simulation results of nonlinear
stiffness are in good agreement with those by experiments. In the
oxy coordinate system in Figs. 7 and 8, the x axis is the vertical
displacement of the beam tip �the central point of the structure�
under the applied force. In Figs. 7 and 8, the origin of the x axis
stands for the original position of the beam tip, as shown in Figs.
4 and 5. When the applied vertical force Fv exceeds the critical
buckling value, the inclined beam will buckle under the compres-
sion load, and the elastic force Fv will decrease with the increas-

Table 1 Beam parameters

Parameters Value

Length L 30 mm
Width b 1 mm

Thickness h 0.2 mm
Young’s modulus E 160 GPa

Fig. 4 Post-buckling configurations for �=9 deg

Fig. 5 Post-buckling configurations for �=30 deg

Fig. 6 Electronic testing device for post-buckling beams

Fig. 7 Elastic force versus displacement for �=9 deg. The
filled circle “�” stands for the position where the beam con-
figuration changes from symmetric state to asymmetric state.
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ing vertical displacement � of the beam tip. The elastic force Fv
keeps positive until the beam tip approaches a critical unstable
position where the elastic force changes to zero. Then, the elastic
force becomes negative as the displacement of the beam tip in-
creases, which indicates that the beam will snap to the other stable
position automatically. This nonlinear phenomenon of the post-
buckling beam is consistent with the results obtained by experi-
ments. The snap-through phenomenon is also depicted in Refs.
�12,13�. By regulating the initial angle and dimensions of the post-
buckling beams, different forcedisplacement curves can be ob-
tained to fulfill practical applications. Therefore, the post-buckling
nonlinear stiffness and the threshold characteristic of the bent
beam can be utilized in designing different kinds of threshold
accelerometers or other safe-arming systems.

In the special case shown in Fig. 9, when the initial angle
equals 90 deg, the configurations obtained in this paper are con-
sistent with the numerical results revealed in Ref. �7�. In Fig. 10,
the variation of the axial force with the vertical displacement �,

which is consistent with the analytical results in Refs. �14,15�,
shows that the axial load increases with the displacement of the
ending point �. By a comparison of the results between the nu-
merical simulation and the experiments, the analytical method for
analyzing post-buckling beams proves feasible in this paper.

6 Conclusion
In order to solve the post-buckling problem and analyze snap-

through behavior of the inclined beam with both ends fixed, the
governing differential equations of the post-buckling beam sub-
jected to combined forces at the ending point are established. By
using an incremental displacement numerical method, the post-
buckling configurations of the large deflection beam at any initial
inclination angle are presented, and the nonlinear stiffness of the
post-buckling beam is obtained in the snap-through process. The
numerical results are consistent with those by experiments. Some
important conclusions are obtained to find application in optimal
design of post-buckling structures.

Moreover, the postbuckled beam snaps from the double-
inflection state to the single-inflection state only when the beam
experiences large deflections. The high order mode configuration
of the buckling beam does not appear in the snap-through process
in the static experiments. In addition, the beam under a transversal
force does not snap until the beam tip passes a certain unstable
position. Furthermore, the critical buckling load increases with an
increasing initial angle �, so does the critical displacement. Fi-
nally, the incremental displacement numerical method can be used
to solve any nonlinear post-buckling problems of inclined beams
with large deflection.
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Independent Meshing of Contact
Surfaces in 3D Boundary Element
Method Contact Analysis
This paper deals with the development of two new boundary element algorithms for
solving 3D, frictional, and linear elastostatic contact problems. The main contribution of
this research is that solving 3D boundary element models with nonconforming discreti-
zations becomes possible for the first time by using the proposed algorithms. The new
algorithms provide the contact constraint equations that will be added to the underde-
termined linear system of equations. These algorithms are implemented in a new 3D
boundary element code using C�� and verified using several numerical examples. For
the models studied, the results using the new boundary element algorithms match well
with the finite element results and clearly demonstrate the feasibility of the new boundary
element approach for 3D contact analysis. �DOI: 10.1115/1.2912998�

Keywords: BEM, three-dimensional contact, nonconforming discretizations

Introduction
After Andersen �1� published the paper on the BEM for two-

dimensional contact problem, many papers have followed �2–7�.
The common characteristic in these papers is that they adopt a
direct constraint technique with which contact constraints are di-
rectly imposed without using the penalty parameter or Lagrangian
multiplier. Even though, there were research results using differ-
ent approaches such as flexibility matrix method �8� or gap ele-
ment method �9�, it seems that the direct constraint approach is
more suitable for boundary element methos �BEM� than for finite
element method �FEM� because tractions are direct output of the
BEM solution. The Lagrangian multiplier or the penalty param-
eter, which are the methods used to impose contact constraints in
displacement based FEM, may not be beneficial for BEM, though
it may be possible to use those approaches in BEM �10�.

Like the FEM, the mathematical programming approach based
on variational inequality form has also been used for the BEM,
Kosoie et al. �11� Another interesting approach is to try to com-
bine the advantages of FEM and BEM. Landenberger and El-
Zafrany’s work �9� adapted BEM for bodies and FEM for contact
areas. On the contrary, Kosior et al. used FEM for bodies and
BEM for contact areas.

Man’s monograph �12� is a good starting point for the applica-
tion of the BEM to contact problem even though it is only for
two-dimensional problems. It also deals with the contact problems
related to fracture mechanics. Dandekar and Conant’s work �2� is
also valuable in understanding the BEM contact program for solv-
ing 2D conformingly meshed problems.

For nonconforming discretization, Blazquez and Paris pio-
neered the initial work in their article �13� in 1992. Olukoko and
Becker published similar work in 1993 �6�. Huesmann and Kuhn
presented a similar work in 1994 �4�. Paris and Blazquez �14�
suggested using linear discontinuous element for frictionless
problem.

All the work mentioned above is only for two-dimensional
problems and used the shape function approach. In 1998,
Blazquez and Paris compared the approaches using shape func-
tions and investigated the problems of this approach �15�.

Blazquez et al. �16� proposed a new approach to remedy the prob-
lem arising from using the shape function approach. In 1992,
Chen and Chen �17� proposed the transformation matrix method
for two-dimensional contact problem with friction. They claim
that the method is highly efficient. In 1998, Martin and Aliabadi
�18� published a new approach for nonconforming mesh for two-
dimensional contact problem. They utilized the fact that inside the
element, which is a smooth surface, additional equation can be
obtained by the singularity removal technique. In 1999, Iban et al.
�19� proposed a new approach. They developed a variable shape
function in which the center node of the quadratic line element
can move. The moving center node will match to the node of the
other body. By this method, the node-on-point situation become
node-to-node situation.

For three-dimensional problems, Garrido et al. �20� did the first
work for the frictional contact problem in 1994. Their formulation
was based on an incremental form and used triangular constant
element. Yamazaki et al. �10� published in 1994 a penalty
parameter-based method using eight-node quadratic element. Se-
gond and Tafreshi �7� used linear triangular element for friction-
less problem in 1998. The advantage of Segond’s work is that
there exists analytical integration for linear triangular element. In
1998, Ghaderi-Panah and Fenner �21� published their work using
quadratic element method for frictionless problems. Their formu-
lation was based on the relatively simple contact condition of
frictionless problem and used nine-node Lagrangian elements to
model the contact region. Leahy and Becker’s work �22� was
based on localized contact variables. They used eight-node qua-
dratic elements and aimed for frictional problem.

The above mentioned research �3D contact problems� is for
elastostatic problems and needs a conforming mesh to solve the
problems. If the current status of the BEM for contact problems is
compared to that of the FEM, the lack of development of 3D
BEM with nonconforming discretization is obvious.

As it happens in FEM, BEM for contact problems can be de-
veloped to solve nonlinear problems, such as plasticity, shape op-
timization, and crack problems �4,12,23–25�.

In this paper, two new algorithms that adapt the boundary inte-
gral equation �BIE� approach to three-dimensional contact prob-
lems are developed because the BIE approach has some advan-
tages over the other methods. This paper describes the
contributions for solving nonconformingly discretized contact
problems with a new three-dimensional BEM program. The new
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algorithms provide the contact constraint equations that will be
added to the underdetermined linear system of equations.

The reasons for using nonconforming discretizations are as
follows.

�1� For problems that result in large deformation or large dis-
placement, even an initially conformingly discretized mesh
can become a nonconforming mesh as the load is applied.

�2� For some problems, the geometry is so complex that it is
impossible to conformingly discretize; otherwise a lot of
effort is required to mesh. The conformity is questionable
when a conforming mesh is used even for simple noncon-
forming geometry.

�3� The analyst may want a quick and easy mesh because the
accuracy of the result is relatively less important or the
result with a nonconforming mesh is believed to be suffi-
ciently accurate compared to the result with a conforming
mesh.

Therefore, the ability to solve the contact problems with a non-
conforming mesh is the first step to solve more advanced and
realistic problems.

Development of the BEM for Contact Problems
The equations necessary to implement three-dimensional BEM

for contact problems are given in this section. One of the purposes
of this section is to explain the fundamental concept necessary to
build three-dimensional BEM program for contact problems. Only
the contents related to the direct constraint technique are
described.

The BIE for three-dimensional linear elastostatics is �26–28�

Cijuj�P� +�
�

Tij�P,Q�uj�Q�dS�Q� =�
�

Uij�P,Q�tj�Q�dS�Q�

�1�

where Tij�P ,Q� is the traction kernel function, and Uij�P ,Q� is
the displacement kernel function.

The term Cij is generally a function of the geometry variation at
the boundary point P. Provided that P is a smooth boundary point,
that is, the outward normal vector to the boundary is continuous at
P, then it can be shown that Cij =1 /2�ij; P and Q are source and
field point, respectively.

Because multiple bodies are involved in contact mechanics, the
main issue in the contact BEM analysis is that the formation of the
system matrix for each body is needed first. Then, the system
matrix of each body will be combined to form the system matrix
for the whole contact system. Incremental form combined with
iterations is necessary to solve nonlinear contact problems using
linearized system matrices.

First, a new total external force is represented as

Fj
m = Fj

m−1 + �Fj
m �2�

where �Fj
m is the increment of the load at step m, with m

=1,2 , . . ., total number of load steps.
There are three cases of applying the load for contact problem.

They are called the total loading scheme, pseudoincremental load-
ing scheme, and fully incremental loading scheme. In Eq. �2�,
there are three possibilities for �Fj

m term—zero, fixed, or variable,
which correspond to the three loading schemes.

For fully incremental loading scheme, the method to calculate
the next increment of loading is necessary. Usually, the previous
two loading steps are used to extrapolate and/or interpolate the
next incremental load. Another issue that needs to be considered is
how to decide the direction of tangential slip.

The traction and displacement corresponding to the increment
of load �2� are

uj
m = uj

m−1 + �uj
m

�3�
tj
m = tj

m−1 + �tj
m

When Eq. �3� is inserted into Eq. �1�, we obtain the following
BIE:

Cij�uj
m−1 + �uj

m� +�
�

Tij�P,Q��uj
m−1�Q� + �uj

m�Q��dS�Q�

=�
�

Uij�P,Q��tj
m−1�Q� + �tj

m�Q��dS�Q� �4�

At the �m−1�th step, the system is also in equilibrium condition as
governed by Eq. �1�. Therefore, Eq. �4� is reduced to the following
incremental form:

Cij�uj
m +�

�

Tij�P,Q��uj
m�Q�dS�Q� =�

�

Uij�P,Q��tj
m�Q�dS�Q�

�5�
In Eq. �5�, the boundary for each body is divided as follows �Fig.
1�:

� = �t + �u + �pc

�pc = �nc + �rc �6�

�rc = �st + �sl

First, the representation of Eq. �6� means that the boundary for
each body ��� is divided into three types: the boundary where
traction is given ��t�, the boundary where the displacement is
given ��u�, and the assigned boundary where contact is possible to
occur ��pc�.

The second representation of Eq. �6� means that the contact
occurs at some part of assigned contact area. This fact requires
that the first iteration loop at each load step should be used to
distinguish the possible contact area ��pc� as the region where
contact occurs ��rc� and the region where contact does not occur
��nc�.

The last representation of Eq. �6� means that there are two
regions inside the contact area. The second iteration loop at each
load step is therefore used to divide the contact area ��rc� into two
different regions—stick region ��st� and slip region ��sl�.

Note that for possible contact region ��pc�, both displacement
and traction are unknown variables. Therefore, the system matrix
is underdetermined at the current step.

For each iteration, the contact status is checked to see if the
compatibility or equilibrium is violated or not. After the contact
mode is determined, the corresponding contact constraint equa-
tions are added to the underdetermined systems in the BEM. This
iteration continues until the compatibility and equilibrium are sat-
isfied. Then, the load step is increased and the procedure repeated.

Fig. 1 Schematic diagram. Point a or b is either a node or a
point on Body A or B
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As easily anticipated, the more the nodes are in the possible
contact region, the slower the calculation because more iterations
occur. However, in order to obtain reasonable results, some mini-
mum number of elements should be employed in the contact
region.

In the stick mode, the constraint equations are

��tt1
a �m − ��tt1

b �m = − ��tt1
a �m−1 − �tt1

b �m−1�

��tt2
a �m − ��tt2

b �m = − ��tt2
a �m−1 − �tt2

b �m−1�
�7�

��tn
a�m − ��tn

b�m = − ��tn
a�m−1 − �tn

b�m−1�

��ut1
a �m + ��ut1

b �m = 0; ��ut2
a �m + ��ut2

b �m = 0,

��un
a�m + ��un

b�m = g0 − ��un
a�m−1 + �un

b�m−1� = g0
m

where g is the distance between points a and b �Fig. 1�. The
subscripts n, t1, t2 mean normal direction and two tangential di-
rections, respectively.

In the slip mode, the constraint equations are

��tt1
a �m − ��tt1

b �m = − ��tt1
a �m−1 − �tt1

b �m−1� ,

��tt2
a �m − ��tt2

b �m = − ��tt2
a �m−1 − �tt2

b �m−1�

��tn
a�m − ��tn

b�m = − ��tn
a�m−1 − �tn

b�m−1� ,
�8�

��tt1
a �m � ���tn

b�m = − ��tt1
a �m−1 � ��tn

b�m−1�

��tt2
a �m � ���tn

b�m = − ��tt2
a �m−1 � ��tn

b�m−1� ,

��un
a�m + ��un

b�m = g0 − ��un
a�m−1 + �un

b�m−1� = g0
m

In the separation mode, the constraint equations are

��tt1
a �m − ��tt1

b �m = − ��tt1
a �m−1 − �tt1

b �m−1�, ��tt2
a �m − ��tt2

b �m

= − ��tt2
a �m−1 − �tt2

b �m−1�
�9�

��tn
a�m − ��tn

b�m = − ��tn
a�m−1 − �tn

b�m−1�, ��tt1
a �m = − ��tt1

a �m−1�

��tt2
a �m = − ��tt2

a �m−1�, ��tn
a�m = − ��tn

a�m−1�

The equations used to check and change the contact status from
separate to contact and vice versa are

��un
a + �un

b�m � g0
m−1, tn

m−1 + �tn
m � 0 �10�

The equations used to check and change the contact status from
slip to stick and vice versa are

�tt
m−1 + �tt

m� � ���tn
m−1 + �tn

m��, �tn
m−1 + �tn

m�b��ut
a + �un

b�m 	 0

�11�

In the BIE approach, this idea is based on the observation that a
boundary element is always a smooth curve �2D� or smooth sur-
face �3D�. Thus, the displacement and traction at any point b on a
boundary element can be evaluated using the following boundary
integral equations:

1

2
ui

b + �
m=1

MB ��
�m

Tij�P = b,Q�uj�Q�d��Q�	
= �

m=1

MB ��
�m

Uij�P = b,Q�tj�Q�d��Q�	 �12�

The boundary traction integral equation is obtained by differenti-
ating Eq. �1� and applying the material constitutive relationships

1

2
ti
b + Eijklnj�b��

m=1

MB ��
�m

Tkpl�P = b,Q�up�Q�d��Q�	
= Eijklnj�b��

m=1

MB ��
�m

Ukpl�P = b,Q�tp�Q�d��Q�	 �13�

where Eijkl is Young’s modulus tensor, nj�b� is the component of
the outward unit normal to the boundary at the Point b, P=b
represents a point that is inside an element in the contact area. The
factor 1 /2 multiplying the traction component ti corresponds to
the jump on the displacement derivatives and on the tractions due
to the limiting process. This factor is the traction counterpart to
the term Cij appearing in the displacement integral equation.

Ukpl =
�Ukp

�xl�b�
, Tkpl =

�Tkp

�xl�b�
,

MB the total number of elements on Body B

The advantages of this approach are that the displacement and
traction calculated from the above BIEs are more theoretically
accurate and that the system is more stable compared to the shape
function approach because the equations from this approach are
global contrary to the equations from shape functions, which are
local. The disadvantage is that, for each node in the contact re-
gion, numerical integration needs to be performed, so that the time
to build the system matrix for each iteration is dramatically in-
creased compared to the shape function approach.

BEM Approaches for 3D Contact Analysis

First Method. The main idea of the first new algorithm is that
the BIE approach explained in previous section is extended to
three-dimensional problems due to the advantages of the BIE ap-
proach. Even though it seems simple to extend the 2D idea to 3D,
there are many technical difficulties to be overcome and these
difficulties will be described in this section. Some of the difficul-
ties are from the BEM itself �the singularities of kernels, espe-
cially traction kernel� and some of them are from the complica-
tions of programming for contact problem. These may be part of
the reasons why there is no published work regarding 3D BEM
for contact problem with nonconforming discretizations. The con-
cept of the new approach is depicted in Fig. 2.

Dealing With Singular Integrals. The first difficulty to be over-
come is the singularities of the integrand of Eqs. �12� and �13�.
This singularity occurs for each docking point when the integra-
tion on the element where the docking point is located is
performed.

It was decided not to use Eq. �13� for evaluating the traction at
the docking point in forming the system matrix, since the cost of
computing the system matrix will become too high and the diffi-
culties in dealing the singular integrals. Thus, for the surface of
one of the bodies in contact �let it be called slave surface�, shape
function approach is used instead to form the system matrix. The
BIE approach is employed to evaluate the displacement at the
docking point. When the integration of the element on which a
docking point �Fig. 2� resides is needed �i.e., integrations in Eq.
�12��, transformation of the variable method is used to deal with
the singular kernels. The variables will be changed as


 = �
c=1

3

N̄c�
̄,�̄��
�c

�14�

� = �
c=1

3

N̄c�
̄,�̄����c

where
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N̄1 =
1

4
�1 + 
̄��1 − �̄�, N̄2 =

1

4
�1 + 
̄��1 + �̄�, N̄3 =

1

2
�1 − 
̄�

�15�

and

J̄ =
�


�
̄

��

��̄
−

��

�
̄

�


��̄
�16�

Since the new Jacobian of Eq. �16� is of order O�r�, one order of
the singularity is removed from the new integrand. Therefore, the
displacement kernel becomes regular and traction kernel becomes
weakly singular for Eq. �12�.

The research about integrating strong singular kernel in 3D
BEM can be found in Refs. �29–31�. In fact, the integration for the
traction kernel in Eq. �12� for the element where the docking point
is located exists in the Cauchy principal value sense. The methods
mentioned in Refs. �29–31� have been developed for 3D BEM, so
they are well suited for the current problem. The code for dealing
with the strongly singular integrals is adapted from the work of
Doblaire and Gracia �30�.

After the integration is executed, Eq. �12� produces linear alge-
braic equations like

uj
b = f�d1, . . . ,di, . . . ,dN� �17�

where di is an unknown degree of freedom.

Dealing With Nearly Singular Integration. When the docking
point is near the edge of an element, the integration on the neigh-
boring element becomes nearly singular and it is difficult to inte-
grate. Theoretically, we can use adaptive integration, where the
element to be integrated is subdivided, or the line integral ap-
proach �32�, where the integral is converted to line integrals to
overcome this difficulty.

A different approach is employed in this research in order to
increase the efficiency. The new approach is that if the distance
between the docking point and the edge of the element is less than
a predetermined value, the shape function approach is used. It is
based on the observation that the error from using shape functions
may be smaller when the docking point is near the edge of the
element than the BIE approach. The decision of the critical dis-
tance by which whether the shape function approach or BIE ap-
proach will be used is a trade-off between accuracy and efficiency,
and can be a further research topic. Factors such as mesh quality,
integration scheme, and so on can play a role in the decision.

Second Method. The main idea of this approach is shown in
Fig. 3. In this approach, Eq. �12� is used for the center point of
each element, i.e., �
 ,��= �0,0� and saved as

uj
0 = f0�d1, . . . ,di, . . . ,dN� �18�

When the docking point of the element is determined, the equa-
tion for the displacement or traction is formulated using a new set
of shape functions employing the value at the center point. The
new shape functions are different from the element shape func-
tions. They are used to generate constraint equations by algebraic
operation and will not add computational overhead. Depending on
the original shape functions used for integrating the BIE, the new
shape functions to be used will be decided.

For Linear Element. The shape functions for linear triangular
elements are used for this case. Then, for the docking point b, a
new equation is produced as

uj
b = N1��uj�1 + N2��uj�2 + N3�uj

0 = f��d1, . . . ,di, . . . ,dN� �19�

Ni� are the triangular shape functions: N1�=
; N2�=�; N3�=1−
−�.
The new equation is added to the system matrix with more

manipulations such as coordinate transformation and imposing
boundary conditions and contact constraints.

For Eight-Node Quadratic Element. The same procedure is
necessary to produce the equations for docking point except that
nine-node Lagrangian interpolation is used. We have

uj
b = N1��uj�1 + N2��uj�2 + N3��uj�3 + N4��uj�4 + N5��uj�5 + N6��uj�6

+ N7��uj�7 + N8��uj�8 + N9�uj
0 = f��d1, . . . ,di, . . . ,dN� �20�

where the nine-node shape functions are

Fig. 2 Conceptual diagrams for the first algorithm

Fig. 3 The concept of second algorithm: Because one more
value is known, new approximation „blue dashed line… is more
accurate than original approximation „black solid line…
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N1� =
1

4

��1 − 
��1 − ��, N2� = −

1

4

��1 + 
��1 − ��

N3� =
1

4

��1 + 
��1 + ��

N4� = −
1

4

��1 − 
��1 + ��, N5� = −

1

2
��1 − 
2��1 − ��

�21�

N6� =
1

2

�1 + 
��1 − �2�

N7� =
1

2
��1 − 
2��1 + ��, N8� = −

1

2

�1 − 
��1 − �2�

N9� = �1 − 
2��1 − �2�

Formation of System Matrix. Once all the necessary equa-
tions are obtained as described above, the next step is to form the
system matrix. There are many ways to assemble the system ma-
trix. Whatever partitioning is selected, the tracking of the loca-
tions of the columns should be carefully recorded. In this study,
the system matrix is partitioned as



Anc 0 Ac

u 0 Ac
t 0

0 Bnc 0 Bc
u 0 Bc

t

0 CA
1 CA

2 CA
3 0 CA

4

0 0 0 0 CB
1 CB

2
��

dA
nc

dB
nc

dA
u

dB
u

dA
t

dB
t


 = �
f1

f2

f3

f4


 �22�

Subscripts A and B refer to Bodies A and B. Subscripts nc and c
mean noncontact and contact regions. Subscripts u and t show the
relationship to displacement and traction. Submatrices A and B
are formulated from Bodies A and B, and C is formulated from
contact constraints.

Because only part of the system matrix changes as the load
changes, static condensation or other schemes can be employed to
save the time in inverting the whole system matrix for each itera-
tion. In addition, iterative solvers such as �generalized minimal
residual� �GMRES� or �conjugate gradient� �CG� �33� can be more
effectively utilized for this system than solving a fully populated
system because this system is in some way banded, as shown in
Eq. �22�.

There are two loops. The first loop is to decide the appropriate
load increment and the corresponding contact area by checking
whether the control pair near the contact area edge for the previ-
ous load step is contacted or separated. The second loop is to
divide the determined contact area as stick or slip zone. When the
slip condition is imposed on the system, the direction of the tan-
gential traction becomes opposite to the direction of the displace-
ment for the frictionless problem.

Every time before imposing contact constraints in the system
equation, a coordinate transformation is necessary because contact
constraints are described using local coordinates. If only shape
function approach is used for both bodies to satisfy the compat-
ibility and equilibrium condition of the contact mode, then meth-
ods such as least squares or minimum potential are necessary to
make sure that the traction is correctly transmitted.

Because there are many possible sources of numerical errors in
the BEM, it is possible that the solution converges to wrong val-
ues. To prevent this, the implementation in this research adopted
force convergence scheme. For every step of load increment, the
global force equilibrium in the L2 norm sense is checked for the
two contact bodies.

Numerical Examples
To test the developed 3D BEM schemes for contact mechanics

analysis, two examples are presented and the results are reported
in this section. The example problems are three-dimensional prob-
lems with frictional contact.

It is not a straightforward task to investigate whether the solu-
tion for a contact problem is accurate enough or not. Solving
three-dimensional contact problems is still a difficult problem.
First, experimental measurement of contact pressure and espe-
cially tangential traction is not easy, if not impossible. In addition,
because each specimen has variations at the microscale in surface
characteristics, material properties, etc., experimental results can
vary for each test specimen, which makes it difficult to compare
experimental models with numerical ones.

Second, the analytical solutions for contact problems are often
limited to simple cases. Proving the existence and uniqueness of
the solution for a contact problem in the general setting is still not
available �34�. These two limitations make it difficult to verify
numerical methods including FEM and BEM for contact
problems.

Though each algorithm can be implemented for both bilinear
and quadratic elements, the first algorithm is implemented with
bilinear elements and the second algorithm is implemented with
quadratic elements. The reason is that the second algorithm can
utilize nine-node Lagrangian shape functions when eight-node
serendipity elements are used for the mesh.

Even though the mathematically rigorous verification is almost
impossible and how the model for a specific problem behaves as
parameters change is still not understood well. FEM has been
utilized to solve the real world problems and has turned out to be
very successful in most of the applications. In this context, the
FEM solutions are used in this study for comparison because the
proposed BEM algorithms are supposed to be equivalent to the
FEM regarding the accuracy, if not better. The developed BEM
code has been verified using several stress analysis �noncontact�
problems before it is applied to solve the contact problems study;
the entire bodies in contact are meshed in both FEM �ANSYS�
and BEM cases. The mesh for the BEM model is the same as the
surface nodes and elements in the corresponding FEM mesh. The
results of the BEM incorporating the proposed algorithms are
compared to the ANSYS FEM results, although one to one com-
parison has limitations because many parameters, such as values
of the chosen penalty parameter �ANSYS only�, are different and
thus affect the FEM and BEM results.

Flat Punch Problem. This is a problem with conforming con-
tact geometry, which is used first to test the developed BEM al-
gorithm. The geometry and mesh of this example are shown in
Fig. 4. The length, height, and width of the upper block are 1 m.
The length, height, and width of the lower block are 2 m. Though
the geometry is conforming, nonconforming mesh is used, as
shown in Fig. 4. For testing purposes, the material properties used
for this test case are Young’s modulus E=1.0 N /m2 and Poisson
ratio �=0.3 for both contact bodies. A pressure of 0.1 N /m2 is
applied for the upper surface of the punch �the upper block� and

Fig. 4 Geometry and mesh for flat punch problem
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the lower surface of the foundation �the lower block� is con-
strained in all directions. Friction coefficient used in this example
is 0.2.

For the BEM models, 1950 four-node linear elements and 702
eight-node quadratic elements are used. The analytical solution for
a rigid punch on an infinite foundation has infinite stress values at
the edges. At the sharp edge of the punch, tractions become very
high as a singularity exists in the elastic solution. This singularity
in stress can cause numerical instability if the punch is much
harder than the foundation. The easy part of this example is that
the nominal contact area is known a priori.

The results for the normal displacement, normal pressure, and
tangential traction on the master surface along the positive X axis
�from the center of the lower surface of the upper block to the
edge of the lower surface� are summarized in Figs. 5–7. Note that
the BEM results in all the cases are comparable with the FEM
results in showing the correct trend. However, the BEM results
exhibit some oscillations. The convergence from using linear ele-
ments to quadratic elements is not evident for BEM. These dis-
crepancies may be due to the numerical difficulties in the nonlin-
ear analysis and the singular behaviors of the solution for this
problem. Further study on selecting the parameters and using finer
meshes can be conducted.

Compared to the published results, although the numerical val-
ues are not the same, because of the differences in the geometries,

material properties, and boundary conditions, the overall shapes of
these plots show similar trends as in the results published in Ref.
�22�.

Cylinder on Block Problem. This example is one of the non-
conforming contact problems. The geometry and one mesh for
this example are shown in Fig. 8. The radius of the partial cylinder
is 1 m, and the length along the axial direction is 1 m. The maxi-
mum height �y-direction� of the partial cylinder is 0.5 m. The
block has the dimensions of 1 m, 0.5 m, and 1 m in the X, Y, and
Z directions, respectively. The material properties used are the
same as those used for the previous example. For testing, a pres-
sure of 0.01 N /m2 is applied on the upper surface of the partial
cylinder and the lower surface of foundation �lower block� is con-
strained in all directions. Friction coefficient used in this example
is also 0.2.

For the BEM models, 2192 four-node linear elements and 2192
eight-node quadratic elements are used.

The results are summarized in Figs. 9 and 10. The X axis for the
graphs starts from the center of the contact region and points to
the direction, as shown in Fig. 8. In Fig. 9, the normal displace-
ment is plotted, which shows good agreements regardless of the
mesh density and the method used. The shape of the curve also
looks very similar to the Hertz analytical result, which assumes an
infinitely long rigid cylinder in contact with an elastic half space.
The numerical results for the normal contact pressure are com-
pared to the Hertz results in Fig. 10 and show good agreements
�results are normalized by the Hertz solution with the half width
of the contact area a=0.14 m and the maximum contact pressure
p0=0.0455 N /m2�, even though Hertz solution is based on a rigid
cylinder. When we consider the rigid cylinder assumption in Hert-
zian solution, the contact area may be larger for elastic cylinder on
elastic foundation, as shown in Fig. 10, because the elastic cylin-
der becomes flattened as load increases. Note that the normal
contact pressure changes in the Z direction for any fixed X coor-

Fig. 5 Displacement in the direction normal to contact surface
and along the X axis „block on block…

Fig. 6 Normal traction on contact surface „block on block…

Fig. 7 Tangential traction on contact surface „block on block…

Fig. 8 Geometry and mesh of the second example
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dinate. For the Hertz solution, this phenomenon does not happen
because the Hertz solution is for a plane strain half space.

Discussion
The results of the proposed BEM algorithms for the examples

studied show reasonable agreement with the FEM results �with
about 5–16% differences�. The efficiency of the BEM, however,
was not good for the given meshes, as expected. Considering that
the current implementation has a lot of room for improving and
that smaller number of BEM elements may have been sufficient to
obtain results with similar accuracy, the efficiency difference may
not be that large for real problems. In addition, total analysis time
including preprocessing for building geometry and meshing can
be much shorter with the BEM as compared to the FEM.

For both cases, FEM models using quadratic elements showed
fluctuating results. Though the results of proposed BEM algo-
rithms also show fluctuations for the examples, the fluctuation is
less for the BEM. These fluctuations may be caused by numerical
errors or instability and need to be further investigated.

The loads applied for the example problems are compression
only. The reason why the tangential load is not applied is that the
possibility of rigid-body motion exists. Because current imple-
mentation is for solving static problems only, inertia force that can
resist the rigid-body motion is not incorporated in the program. In

other words, because at initial increment the load is so small that
the contact force may not be large enough to hold the body that
does not have displacement constraints or, numerically, initial gap
may exist, the system matrix becomes singular or nearly singular.
To avoid this problem, initial penetration can be imposed or tem-
porary damping elements can be used. However, the algorithms
proposed in this research can play an essential role as a foundation
for solving dynamic contact problems, friction induced vibration
problems, and large deformation problems.

Though simple examples as compared to real industrial prob-
lems �such as the gear coupling problem� are used in this BEM
research, the results show the applicability of the BEM for certain
contact problems, such as problems with complex geometries or
problems with cracks, for both of which the BEM has been proved
much easier to use in the modeling.

Conclusion
As the main contribution of this paper, two algorithms to solve

the three-dimensional and frictional contact problem by the BEM
with nonconforming discretizations are proposed and imple-
mented in C��. A new approach to improve the efficiency of the
3D boundary element method by taking into account the zero
boundary conditions is proposed for computing the system matrix.
The formation time of the system matrix can be reduced by
roughly 20–40%.

Acknowledgment
This work was supported by the “Ministry of higher education

and scientific research” Project CNEPRU �J0301920060015�.

References
�1� Andersson, T., and Allan-Persson, B. G., 1981, “The Boundary Element

Method Applied to Two-Dimensonal Contact Problems With Friction,” Third
International Seminar on Recent Advances in Boundary Element Methods,
Springer, Irvine.

�2� Dandekar, B. W., and Conant, R. J., 1992, “Numerical Analysis of Elastic
Contact Problems Using the Boundary Integral Equation Method. Part 1:
Theory,” Int. J. Numer. Methods Eng., 33, pp. 1513–1522.

�3� Hack, R. S., and Becker, A. A., 1999, “Frictional Contact Analysis Under
Tangential Loading Using a Local Axes Boundary Element Formulation,” Int.
J. Mech. Sci., 41, pp. 419–436.

�4� Huesman, A., and Kuhn, G., 1995, “Automatic Load Incrementation Tech-
nique for Plane Elastoplastic Frictional Contact Problems Using Boundary
Element Method,” Comput. Struct., 56�5�, pp. 733–744.

�5� Karami, G., 1993, “Boundary Element Analysis of Two-Dimensional Elasto-
plastic Contact Problems,” Int. J. Numer. Methods Eng., 36, pp. 221–235.

�6� Olukoko, O. A., and Becker, A. A., 1993, “A New Boundary Element Ap-
proach for Contact Problems With Fricion,” Int. J. Numer. Methods Eng., 36,
pp. 2625–2642.

�7� Segond, D., and Tafreshi, A., 1998, “Stress Analysis of Three-Dimensional
Contact Problems Using the Boundary Element Method,” Eng. Anal. Bound-
ary Elem., 22, pp. 199–214.

�8� Takahashi, S., and Brebbia, C. A., 1992, “A Boundary Element Flexibility
Aproach for Solving Contact Problems With Friction,” Eng. Anal. Boundary
Elem., 4.

�9� Landenberger, A., and El-Zafrany A., 1999, “A Boundary Element Analysis of
Elasic Contact Problems Using Gap Finite Elements,” Comput. Struct., 71,
pp. 651–661.

�10� Yamazaki, K., Sakamoto, J., and Takumi, S., 1994, “Penalty Method for
Three-Dimensional Elastic Contact Problems by Boundary Element Method,”
Comput. Struct., 52�5�, pp. 895–903.

�11� Kosior, F., Guyot, N., and Maurice, G., 1999, “Anaysis of Frictional Contact
Problem using Boundary Element Method and Domain Decomposition
Method,” Int. J. Numer. Methods Eng., 46, pp. 65–82.

�12� Man, K. W., 1994, Contact Mechanics Using Boundary Elements, Computa-
tional Mechanics, Southampton.

�13� Blazquez, A. et al., 1992, “An Algorithm for Frictionless Contact Problems
With Non-Conforming Discretiations Using BEM,” Boundary Element XIV, C.
A. Brebbia, J. Dominguez, and F. Paris, eds., Computational Mechanics,
Southampton, pp. 409–420.

�14� Paris, F., Blazquez, A., and Canas, J., 1995, “Contact Problems With Noncon-
forming Discretizations Using Boundary Element Method,” Comput. Struct.,
57�5�, pp. 829–839.

�15� Blazquez, A., Paris, F., and Canas, J., 1998, “Interpretation of the Problems
Found in Applying Contact Conditions in Node-to-Point Schemes With
Boundary Element Non-Conforming Discretizations,” Eng. Anal. Boundary
Elem., 21, pp. 361–375.

�16� Blazquez, A., Paris, F., and Mantic, V., 1998, “BEM Solution of Two-

Fig. 9 Displacement in the direction normal to contact surface
„cylinder on block…

Fig. 10 Normal traction on contact surface „cylinder on block…

Journal of Applied Mechanics JULY 2008, Vol. 75 / 041021-7

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Dimensional Contact Problems by Weak Application of Contact Conditions
With Non-Conforming Discretizations,” Int. J. Solids Struct., 35�24�, pp.
3259–3278.

�17� Chen, W. H., and Chen, T. C., 1992, “Boundary Element Analysis for Contact
Problems With Friction,” Comput. Struct., 45�3�, pp. 431–438.

�18� Martin, D., and Aliabadi, M., 1998, “A BE Hyper-Singular Formulation for
Contact Problems Using Non-Conforming Discretization,” Comput. Struct.,
69, pp. 557–565.

�19� Iban, A. L., Garrido, J. A., and Prieto, I., 1999, “Contact Algorithm for Non-
Linear Elastic Problems With Large Displacements and Friction Using the
Boundary Element Method,” Comput. Methods Appl. Mech. Eng., 178, pp.
51–67.

�20� Garrido, J. A., Forces, A., and Paris, F., 1994, “An Incremental Procedure for
Three-Dimensional Contact Problems With Friction,” Comput. Struct., 50, pp.
201–215.

�21� Ghaderi-Panah, A., and Fenner, R. T., 1998, “A General Boundary Element
Method Approach to the Solution of Three-Dimensional Frictionless Contact
Problems,” Eng. Anal. Boundary Elem., 21, pp. 305–316.

�22� Leahy, J. G., and Becker, A. A., 1999, “The Numerical Treatment of Local
Variables in Three-Dimensional Frictional Contact Problems Using the Bound-
ary Element Method,” Comput. Struct., 71, pp. 383–395.

�23� Abascal, R., 1995, “2D Transient Dynamic Friction Contact Problems. I. Nu-
merical Analysis,” Eng. Anal. Boundary Elem., 16, pp. 227–233.

�24� Martin, D., and Aliabadi, M., 1998, “Boundary Element Analysis of Two-

Dimensional Elastoplastic Contact Problems,” Eng. Anal. Boundary Elem.,
21, pp. 349–360.

�25� Simunovic, S., and Saigal, S., 1995, “Contact Surface Optimization Using
Boundary Element Method,” Comput. Struct., 56�5�, pp. 745–750.

�26� Becker, A. A., 1992, The Boundary Element Method in Engineering: A Com-
plete Course, McGraw-Hill, New York.

�27� Beer, G., 2001, Programming the Boundary Element Method: An Introduction
for Engineers, Wiley, New York.

�28� Gao, X., and Davies, T. G., 2002, Boundary Element Programming in Me-
chanics, Cambridge University Press, Cambridge.

�29� Dominguez-Hernandez, J., Gracia, L., and Doblare, M., 1995, “A Non-Linear
transformation Algorithm for the Integration of the Singular Kernels in 3D
BEM for Elastostatics,” Eng. Anal. Boundary Elem., 17, pp. 27–32.

�30� Doblare, M., and Gracia, L., 1997, “On Non-linear Transformations for the
Integration of Weakly-singular and Cauchy Principal Value Integrals,” Int. J.
Numer. Methods Eng., 40, pp. 3325–3358.

�31� Guiggiani, M., and Gigante, A., 1990, “A General Algorithm for Multidimen-
sional Cauchy Principal Value Integrals in the Boundary Element Method,”
ASME J. Appl. Mech., 57, pp. 906–915.

�32� Liu, Y., 1998, “Analysis of Shell like Structures by the Boundary Element
Method Based on 3-D Elasticity: Formulation and Verification,” Int. J. Numer.
Methods Eng., 41�3�, pp. 541–558.

�33� Saad, Y., 1996, Iterative Methods for Sparse Linear Systems, PWS, Boston.
�34� Wriggers, P., 2002, Computational Contact Mechanics, Wiley, New York.

041021-8 / Vol. 75, JULY 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



J. G. Simmonds
Fellow ASME

Department of Civil Engineering,
University of Virginia,

Charlottesville, VA 22904-4742
e-mail: jgs@virginia.edu

An Alternative to F. Y. M. Wan’s
Single Equation for an Elastic
Right Circular Conical Shell
In 1970, F. Y. M. Wan derived a single, complex-valued ordinary differential equation for
an elastically isotropic right circular conical shell (“On the Equations of the Linear
Theory of Elastic Conical Shells,” Studies Appl. Math., 49, pp. 69–83). The unknown was
the nth Fourier component of a complex combination of the midsurface normal displace-
ment and its static-geometric dual, a stress function. However, an attempt to formally
replace the Fourier index n by a partial derivative in the circumferential angle � results
in a partial differential equation, which is eighth order in �. The present paper takes as
unknowns the traces of the bending strain and stress resultant tensors, respectively, and
derives static-geometric dual partial differential equations of fourth order in both the
axial and circumferential variables. Because of the explicit appearance of Poisson ratios
of bending and stretching, these two equations cannot be combined into a single
complex-valued equation. Reduced equations for beamlike (axisymmetric and lateral)
deformations are also derived. �DOI: 10.1115/1.2875798�

1 Introduction
Attempts to reduce the homogeneous eight-order system of par-

tial differential equations of the classical linear theory of elastic
shells to a system with fewer unknowns go back at least to Gold-
enveiser �1� who showed that if the normal deflection of the ref-
erence surface and its static dual, a stress function, were taken as
unknowns then, in general, they satisfy a coupled pair of sixth-
order equations. Two notable exceptions are spherical shells—
see, for example, Koiter �2�—and circular cylindrical shells. A
history of various reductions of the equations for this latter shell
may be found in Refs. �3,4�.

In Ref. �5� Sanders attempted to reduce the linear Sanders–
Koiter �SK� equations �6,7� for elastically isotropic shells with
nondevelopable midsurfaces �i.e., midsurfaces of nonzero Gauss-
ian curvature� to a single, complex-valued partial differential
equation, free of Poisson’s ratio � �save for its appearance in a
small parameter also containing the thickness of the shell and a
typical radius of curvature of the reference surface�. The complex
unknown was N+ iK, where N and K are, respectively, the traces
of the stress resultant and bending strain tensors. The success of
the scheme depended on being able to add certain small coupling
terms to the stress-strain relations, these terms, in turn, having to
satisfy certain auxiliary partial differential equations. Unfortu-
nately, as Sanders himself noted in an addendum to Ref. �5�, his
scheme foundered on Cohen’s example �8� of the �near� inexten-
sional deformation of a right helicoidal shell where the factor 1
−� is prominent, � being Poisson’s ratio of bending. A later
analysis by Latta and Simmonds �9� showed that the SK equations
for a shell with any minimal reference surface �of which the right
helicoidal shell is a special case� could be reduced to two coupled
fourth-order partial equations for the rotation about the normal
and a stress function. The appearance of the factors 1−� and 1
+�, where � is a Poisson ratio of stretching, prevents the two
equations from being written as a single complex-valued equation
�without a conjugate unknown�, confirming Sanders observation.

However, as Novozhilov’s earlier analysis shows—see Refs.

�10,11�—Sanders’ scheme works for general cylindrical shells. Fi-
nally, Wan showed �12� that the equations for an elastically iso-
tropic right circular cone, after a Fourier decomposition in the
polar angle �, can be reduced to a single, complex-valued fourth-
order ordinary differential equation. However, if one attempts to
formally replace the Fourier index n by the differential operator
� /��, one obtains an equation of eight order in �. Herein, we
show, alternatively, that the SK equations for an elastically isotro-
pic right circular cone can be reduced to static-geometric dual
fourth-order partial differential equation for K and N, which be-
cause of the explicit appearance of Poisson ratios � and � of
bending and stretching cannot be combined into a single complex-
valued equation.

First, we present the general SK equations in tensor form to
indicate concisely the type of acceptable approximations we can
introduce into the stress-strain relations. Then, we specialize to
shells with developable reference surfaces and, at the same time,
introduce physical tensor components. Finally, we show that if the
coordinate lines orthogonal to the generators of the developable
reference surface have constant geodesic and normal curvature—
implying that the reference surface is a right circular cone—then
the governing equations can be reduced to two coupled fourth-
order partial differential equations that are static-geometric duals.

2 Differential Geometry
Let Rx��1 ,�2� denote the twice differentiable position of the

orientable shell reference surface S, where ��1 ,�2� are the dimen-
sionless Gaussian surface coordinates and R is a typical radius of
curvature of S. Furthermore, let n�x� denote a unit normal to S at
x. In standard notation, the dimensionless covariant base vectors
on S are defined and denoted by a��x,���x /���, �=1,2; the
covariant and contravariant components of the surface metric ten-
sor by a���a� ·a� and a��=a� ·a�, where a� ·a�=��

�, the Kro-
necker delta; the contravariant components of the dimensionless
surface permutation tensor by p��; and the covariant components
of the dimensionless surface curvature by b��=n ·x,��, where co-
variant differentiation on S will be denoted by a vertical bar.
Indices, as usual, are raised or lowered with respect to the com-
ponents of the metric tensor and n,�=−b�

�a�.
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3 Sanders–Koiter Shell Equations
The equilibrium-compatibility equations of SK theory, as pre-

sented in Ref. �13�, may, in the absence of surface loads, be writ-
ten in the concise form,

��aT��,� = 0 �1�

where a=det�a��� and

T� = N� + iK�

= �N�� +
1

2
�p��S��M�� + i�K̃�� −

1

2
�p��S��Ẽ��	
a�

− ���M�� − iẼ�����n �2�

is the reduced, complex-valued, stress-strain. Here, 	hN�� and
	h2M�� are, respectively, the contravariant components of the
�modified, symmetric� stress resultant and stress couple of SK

theory �13�, where 	 is a typical stress level; ��h /R; K̃��

= p��p��K��=a��K


−K��, etc.; h−1�K�� and �E�� are, respec-

tively, the contravariant components of the �modified, symmetric�
bending and extensional strains of SK theory, where � is to be
chosen presently. Furthermore,

S�� =
1

2
�p�
b�


 + p�
b�

� = S�� �3�

are the covariant components of Sanders’ tensor. Note that

a��S�� = b��S�� = 0 �4�

From Eq. �2�, the following pairs are static-geometric duals:

�N��,M��:K̃��,− Ẽ��
 �5�
Finally, we take the stress-strain relations in the isotropic form

Ẽ�� = �A	h/���a��N − �1 + ��N�� + O��K����, N � N


 �6�

M�� = ��D/	h3��a��K − �1 − ��K̃�� + O��N����, K � K




�7�

where the order terms in Eqs. �6� and �7�—discussed in the fol-
lowing section—represent the inherent errors in the stress-strain
relations of any classical shell theory. Here, we have allowed for
an independent stretching compliance A and an independent bend-
ing stiffness D, as well as independent Poisson’s ratios of stretch-
ing � and bending �. Conventionally,

A =
1

Eh
, D =

Eh3

12�1 − �2�
, � = � �8�

where E is Young’s modulus. With �=	h2�A /D=O�	 /E� and c
��AD /h=O�1�, we have A	h /�=�D /	h3=c.

4 Errors in the Uncoupled Stress-Strain Relations
The error terms in Eqs. �6� and �7� come from making two

types of approximations in the strain-energy density. First, cou-
pling terms, of which �b�

�E

�K�


 and ��2b���
E���
 are typical,
are neglected, where �
 are the contravariant components of the
transverse shearing strain. �Note that b�

� must appear because both
K�


 and �
 undergo a sign change if the normal to S is replaced by
−n.� Second, when the three moment equilibrium equations—not
displayed explicitly here—are multiplied by rotations �� and 

and the divergence theorem applied, one obtains the dimension-
less expression K��= 1

2 �����+�����+S��
. Shears and a shear-
rotation strain, scaled by the factor ��, are then introduced by
setting ��=w,�+b�

�u�−��� and 
= 1
2���u���−��. Finally, all

terms involving �� or � are neglected in the resulting stress-strain

relations. However, in a shear-deformation theory �where drilling
moments are neglected�, ��=O��K����� and �=0. Thus, in Eq.
�6�,

K�� = �b���K��, ��K�
�

��, ��b���
��K���
�
 �9�

where the notation means all possible products of the factors out-
side and inside the angular brackets �� �� that form the contravari-
ant components of a second-order tensor. Likewise, by the static-
geometric duality,

N�� = �b���N��, ��N�
�

��, ��b���
��N���
�
 �10�

The form of these error terms is key to the reductions to follow.
For further discussion on the errors in Love’s uncoupled stress-
strain relation, see Koiter �7� and Niordson �14�.

5 Preliminary Simplifications
The substitution of Eq. �2� into Eq. �1� shows that

�N���� = − ��b�
��M�
�
 + 1

2 p����S��M������ �11�

with an analogous expression for �K̃����. Thus, Eqs. �6� and �7�
yield

�M���� = �c��K�� + O���N������� �12�

with an analogous expression for �Ẽ����. Thus, with error terms
omitted and by Eq. �4�, Eq. �2� becomes

T� = �N�� −
1

2
�

*
�1 − ��p��S��K̃��

+ i�K̃�� +
1

2
�

*
�1 + ��p��S��N��
�a� − ��

*
�K − iN���n

�13�

where �*=�c=�AD /R�1. Note that the static-geometric duality
may be extended to the stress-strain relations as they manifest
themselves as the coefficients of �* in Eq. �13� by appending to

Eq. �5� the pairing ��*,� :−�*,−�
.

6 Shells With a Developable Reference Surface
From Ref. �15�, the position Rx of a point on a developable

surface may be given the form

x = y��� + �u��� �14�

where � is dimensionless distance along a generator from the
reference curve y��� toward the edge of regression and

− u = m���sin ���� + b���cos ����, �� = ���� �15�

Here, from Ref. �16�, m and b are the normal and binormal vec-
tors that appear in the Serret–Frenet formulas

y� = t, t� = �m, m� = − �t + �b, b� = − �m �16�

� and � being the dimensionless curvature and torsion of y���.
�The notation used in Ref. �15� has been changed: x and y have
been interchanged, n has been replaced by m, and a sign error in
the expression for u has been corrected.� Furthermore,

t� = ��− sin �u + cos �n� = gu + kn and u� = � sin �t = − gt

�17�

where k and g are, respectively, the geodesic and normal curva-
tures of y���. Thus, with �1=� ,�2=�, and f �1−g�,

a1 = ft, a2 = u, �a = f , n = t � u = m cos � − b sin �,

n� = − kt �18�

b11 = fk, b12 = b22 = 0, S11 = S22 = 0, S12 = −
1

2
k �19�
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To introduce physical components of the stress resultant and
bending strain tensors, we set

fT1 = �N� + iK��t + �Ŝ − iÛ�u − �
*

f−1�K − iN�,�n �20�

T2 = ��Ŝ − iÛ� + �
*

f−1k��1 − ��Û − i�1 + ��Ŝ�
t

+ �N� + iK��u − �
*
�K − iN�,�n �21�

where

Ŝ � S − �1

2
	�

*
f−1k�1 − ��Û �22�

and where we have taken advantage of the inherent errors in the

stress-strain relations (6) and (7) to replace S by Ŝ and U by Û in
those terms with an �* factor, that is, those terms that come from
the stress-strain relations.

Substituting Eqs. �20� and �21� into Eq. �1�, using the differen-
tiation formulas in Eqs. �17� and �18�, and taking the real part of
the resulting vector equation, we find that the coefficients of the
basis vectors t ,u ,n, respectively, imply the three scalar equations

fN�,� + �f2Ŝ�,� + �
*
k��1 − ��fÛ,� + K,�� = 0 �23�

gN� + Ŝ,� + �fN��,� = 0 �24�

− �
*
�K + f−1kN� = 0 �25�

where

�K = f−1��f−1K,��,� + �fK,��,�� �26�

is the Laplacian of K on S. Note that if we set N�=N−N� and
recall that g=−f ,��� ,��, we may replace Eq. �24� by

Ŝ,� + �fN�,� − f−1�f2N��,� = 0 �27�
Using the static-geometric duality,

�N�, Ŝ,N�;�,�
*
:K�,− Û,K�;− �,− �

*

 �28�

we may easily infer from Eqs. �23�–�25� the three reduced com-
patibility equations.

7 Two Reduced Equations for a Right Circular Coni-
cal Shell

A general conical reference surface has arbitrary normal curva-
ture k but constant geodesic curvature g so that f = f���. �In a right
circular conical shell k is also constant; in a general cylindrical
shell g=0. This is readily seen if the reference surface is devel-
oped into a plane.�

Forming the combination �Eq. �23��,�− �f2Eq. �27��,� to elimi-

nate Ŝ, we have

f��f2N�� − �f2�fN�,��,� + �
*
�k��1 − ��fÛ,� + K,��
,� = 0 �29�

Now use Eq. �25� and its kinematic dual to express N� and K�
in terms of K and N and again ignore terms of the same order as
the inherent errors in the stress-strain relations. Because the geo-
metric dual of Eq. �23� implies that

fÛ,� = 2gÛ + O��
*
� �30�

the Poisson ratio terms in Eq. �29� vanish for general cylindrical
shells �g=0�, see Ref. �10� or �11�. On the other hand, if g�0 and
we carry out the � differentiation in the last term in Eq. �29�, we

are left with a factor fk�Û,� that cannot be eliminated unless k
=const, which we now assume. That is, we assume that the refer-
ence surface S is a right circular cone.

Using the dual of Eq. �27� to set

Û,� = �fK�,� − �
*
k−1f−1�f3�K�,� �31�

we have

fÛ,�� = f��fK�,� − �
*
k−1f−1�f3�K�,��,� �32�

although in what follows, we ignore the underlined term as being
of the same order as the error in the stress-strain relations. We
note that for axisymmetric deformation it should be retained to
obtain reduced equations that agree with the overall beamlike
equations that we derive in the Appendix and which contain no
Poisson ratio terms. Thus, the final form of Eq. �29� is

�
*
�f��f3�K� + k2�K,�� + �1 − ��f�fK�,���
 = k�f2�fN�,��,�

�33�
By the static-geometric duality, the companion to Eq. �33� is

− �
*
�f��f3�N� + k2�N,�� + �1 + ��f�fN�,���
 = k�f2�fK�,��,�

�34�

The factors �1−�� and �1+�� prevent the combining of Eqs. �33�
and �34� into a single complex-valued equation.

8 (Seemingly Paradoxical) Simplification
Wan noted in Ref. �12� that the small parameter �* can be

scaled out of the equations for a right circular conical shell. �This
is also possible for general cones.� Thus, if we set

f = 1 − g� = �
*
x, �/�� = − �

*
−1g�/�x, � � x�/�x, D � �/��

�35�
and note the commutative and pass-through properties

�� + p��� + q� = �� + q��� + p�, ��xpF� = xp�� + p�F
�36�

then Eqs. �33� and �34� take the form

�Q + �1 − ��g2k2��� + 1��K = g2k��� + 1��xN� �37�

− �Q + �1 + ��g2k2��� + 1��N = g2k��� + 1��xK� �38�

where, because g2+k2=1,

Q � �D2 + g2�� + 1�2��D2 + g2�2� + k2D2

= D2�D2 + 1� + g2��� + 1��g2��� + 1� + 2D2� �39�

The disappearance of the small parameter �* at first glance seems
to invalidate our frequent neglect of terms of relative order �* in
the stress-strain relations. However, x=O�1� means that we are
within a thickness of the apex—a region where classical shell
theory simply fails to hold.

Setting

�K,N
 = �Kn�x�,Nn�x�
sin n�, n = 0,1,2, . . . �40�
we obtain the ordinary differential equations

�Qn��� + �1 − ��g2k2��� + 1��Kn = g2k��� + 1��xNn� �41�

− �Qn��� + �1 + ��g2k2��� + 1��Nn = g2k��� + 1��xKn�
�42�

where

Qn � n2�n2 − 1� + g2��� + 1��g2��� + 1� − 2n2� �43�

9 Axisymmetric Solutions „n=0…
These follow from Eqs. �A11� and �A13� and their kinematic

duals or from Eqs. �25� and �27� and their duals. With the change
of variables �35�, Eq. �A11� and its dual may be combined into the
single complex-valued equation
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�g2��� + 1� − ikx�P0 = xF
*

�44�

where P0�K0+ iN0 and F* is the constant, real-valued, dimen-
sionless axial force. Equation �44� is a nonhomogeneous Bessel
equation whose solution, with the aid of Eqs. �127�–�129� of Ref.
�17� and Chap. 12 of Ref. �18�, may be expressed in terms of ber,
bei, and Struve functions.

Equation �A13� and its dual are algebraic and readily yield the
solution

S0 + �U0 =
x−1T

*

1 + 3ik��1 − ���1 + ��
, � = i��1 − ��

�1 + ��
�45�

where T* is a dimensionless torque �moment about the axis of the
cone�.

10 Lateral Solutions „n=1…
Overall force and moment equilibrium, Eq. �A6�, plus Eqs.

�A15� and �A18� imply that M����=0. Thus, using g2+k2=1 and
Eq. �31� to set U1=−�fK1��+O��*�, we have from Eq. �A18�

kf2N1 + �
*
�f�K1 + gfK1� − �1 − �1 − ��k2K1�
 = A1 + A2�

�46�

or

kxN1 − �g2��� + 1� − 2 + �1 − ��k2�K1 = A
1
*x−1 + A

2
* �47�

where the various A’s are constants. The dual of Eq. �47� is

kxK1 − �g2��� + 1� − 2 + �1 + ��k2�N1 = 0 �48�

there being no constant terms because there are no gross disloca-
tions. These equations agree with Eqs. �41� and �42� if n=1 and if
integrated twice.

11 Solutions About x=0 (the Apex)
Looking for solutions of Eq. �37� the form

Kn = xp�
0

�

a2m�p�x2m, Nn = xp�
0

�

b2m+1�p�x2m+1 �49�

we find that p must satisfy the indicial equation

P4�p;n,�� � Qn�p� − 2�1 − ��g2k2�p + 1� = 0 �50�

If the conical shell includes its apex, then finite strain energy on
any portion 0�x� l requires that �0

l K2xdx�� so that we must
exclude solutions associated with values of p�−1.

Let the four roots of P4�p� be denoted by p1, p2, p3, p4. We now
show that p1, p2�−1 and −1� p3, p4. To this end, note the fol-
lowing values of P4:

P4��n/g;n,�� = − k2�n�1 � �1 − ��g� + �1 − ��g2
 �51�

P4��n/g − 1;n,�� = − k2n�n � �1 − ��g� �52�

P4�− 1;n,�� = n2�n2 − g2 − k2� �53�

If � is the �acute� apex angle of the conical reference surface, then
g=sin � and k=−cos �, and, since n�2, we see that the right
sides of Eqs. �51� and �52� are negative whereas the right side of
Eq. �53� is positive. Thus, because P4�p ;n��g4p4 as p→�, there
must be two roots of P4 less than −1 and 2 greater.

By the static-geometric duality, two of the roots of P4�q ;n ,
−��, call them q1, q2, will be less than −1 and 2, q3, q4 will be
greater so that, altogether we obtain four formal solutions about
the apex x=0, two of the form

Kn = xp3,p4�
0

�

a2m�p3,p4�x2m, Nn = xp3,p4�
0

�

b2m+1�p3,p4�x2m+1

�54�

with a0�p3� and a0�p4� arbitrary, and two of the form

Nn = xq3,q4�
0

�

b2m�q3,q4�x2m, Kn = xq3,q4�
0

�

a2m+1�q3,q4�x2m+1

�55�

with b0�q3� and b0�q4� arbitrary. The coefficients in these power
series satisfy recurrence relations that are straightforward to set
down but will not be given here.

12 Solutions About x=�

Because the point x=� is an irregular singular point of the two
ordinary differential equations �37� and �38�, the dominant term of
the solution is determined by the dominant term of the simplified,
complex-valued differential equation

��� + 1��g2��� + 1� − ikx�T� = 0 �56�

where the dominant term in each of the four solutions of T� are the
dominant terms in K+ iN as x→�.

Two integrations yield

�g2��� + 1� − ikx�T� = C1 + C2x−1 �57�

where C1 and C2 are arbitrary complex constants. The dominant
particular solutions of Eq. �57� are of the form C

1
*x−1+C

2
*x−2. The

solution T� �C
1
*x−1 leads to infinite strain energy on the interval

l�x�� and must be discarded. However, the solution T�
�C

2
*x−2 is acceptable.

According to Erdélyi p. 13 of Ref. �19�, the two homogeneous
solutions of the second-order differential equation in Eq. �57�
have formal asymptotic solutions whose first �dominant� terms are
C� exp��2g−1�ikx�1/2�x−3/4, where C� are arbitrary complex con-
stants. The growing exponential must be discarded.

Thus, with T�K+ iN, we can seek asymptotic solutions of the
form

T = x−2�
0

�

cmx−m + exp�− 2g−1�ikx�1/2�x−3/4�
0

�

dmx−m as x → �

�58�
for the differential equation

�Qn��� − g2k2�� + 1��1 +
1

2
�� − ��
 − i��� + 1�x�T

−
1

2
�� + ��g2k2�� + 1�T̄ = 0 �59�

where T̄=K− iN and the coefficients cm and dm in Eq. �58� are
complex.

13 Conclusions
Wan’s two equations �13� and �14� for a right circular conical

shell in Ref. �12�, derived in a totally different way than ours and
involving the normal deflection of the reference surface and its
dual, a stress function, do not contain the bending and stretching
Poisson ratios factors �1−�� and �1+�� and thus, in contrast to
our equations �37� and �38�, can be combined into one equation
for a complex-valued unknown. Because Wan does not explicitly
give the algebraic details of his final reduction �simply mentioning
that terms of order �=h /R have been omitted� it is not easy to
determine if �- and �-terms have been consistently neglected.

For a finite conical shell with no apex, solutions that we have
excluded because of unphysical behavior as x→0 or x→� must
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be considered. Of course, the two sets of eight solutions about
these two singular points cannot be independent but must be re-
lated by �presently unknown� connection coefficients. However,
for such a finite shell, it is probably much simpler in practice to
use standard perturbation techniques to express the four boundary
conditions at each edge in terms of four boundary layer and four
interior solutions.

Because our equations are intrinsic, that is, because the un-
knowns are stresses and strains, there remains the task of deter-
mining the displacements. For the more general case of nonlinear
shell equations, this problem has been treated recently by Pietrasz-
kiewicz and Szwabowicz �20�.
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Appendix: Beamlike Solutions
Let �	hRF and �	hR2M denote, respectively, the net force

and moment acting over any section �=const of a right circular
conical shell of apex angle �. Then from Eq. �13�,

�F��� =�
0

2�

fRT2d�, �M��� =�
0

2�

�e� � f2RT2 + �fM2�d�

�A1�

where R denotes “real part of,” e�=cos �n−sin �u=−�kn+gu� is
a radial vector, and

M2 = M�t − Hu = c��Kt − �1 − ��Ûu + O��
*
�� �A2�

is the dimensionless stress couple acting on the edge. Note that
because u=n� t , t=e��, and n�=−kt, an integration by parts yields

�M��� = f�
0

2�

�e� � fT̄2 + �
*
M�t�d� �A3�

From Eq. �25�,

N� = N − N� = N − �
*

fk−1�K �A4�

So, with the stress-strain relations �7�, Eq. �21� yields

fT̄2 � fRT2 − ��Hn��

= �f Ŝ + 2�
*
�1 − ��kÛ�t + f�N − �

*
fk−1�K�u

− �
*
�fK,� + �1 − ��Û,��n �A5�

the “effective” Kirchhoff edge force �13�.
Because � cos � is the dimensionless distance along the axis of

the cone from its apex and k=−cos �, overall force and moment
equilibrium—beamlike equilibrium—require that

F� = 0, M� − kk � F = 0 �A6�

Let �i , j ,k
 denote the standard set of orthonormal Cartesian
base vectors, with i horizontal, j vertical, and k along the axis of
the cone pointing toward the �real or virtual� apex. Because
sin �=g , cos �=−k,

e� = cos �i + sin �j, t = − sin �i + cos �j, u = − �ge� + kk�,

n = − ke� + gk �A7�
Furthermore, from Eqs. �26� and �38�,

f�K0 = �fK0���, f2��K1 sin �� = � sin �, � � f�fK1��� − K1

�A8�
Thus, with

�Ŝ,Û
 = �Ŝ0,Û0
 + �Ŝ1,Û1
cos � �A9�
Eqs. �A1� and �A4� imply that

F · j � V = f Ŝ1 − gfN1 + �
*
k−1�k2�1 − ��Û + �

*
f�gfK1� + K1���

�A10�

F · k � F = 2f�− kN0 + �
*
��fK0��� − gK0��
 �A11�

M · i � M = − kf2N1 + �
*

f��1 − K1 − gfK1� + �1 − ���gÛ1 + K1��

�A12�

M · k � T = 2f�f Ŝ0 + 2�
*
�1 − ��kÛ0� �A13�

Equations �A10�–�A13� and their kinematic duals �for which the
analogous constants are zero because there are no gross disloca-
tions� yield four first integrals for n=0 and four for n=1.

We now simplify Eqs. �A10� and �A12� further—these repre-
sent first integrals for lateral �n=1� deformation—by exploiting
the inherent errors in the stress-strain relations to express V and M
in terms of the basic unknowns K1 and N1 only.

Beginning with Eq. �A10�, we have from Eqs. �25�, �27�, and
�A8�, and their duals,

fS1 = f�fN1�� − �
*
k−1�f�1�� and U1 = − �fK1�� + O��

*
�

�A14�
Thus,

V = ��f2N1� + �
*
k−1f�K1 + gfK1� − �1 − �1 − ��k2K1�
�

�A15�
To reduce and simplify Eqs. �A12�, note from Eqs. �23�–�25�

and �A4� that

�f�Ŝ1 − gN1��� = − �
*
�k�1 − ��Û1 + k−1g�1 + fK1��� �A16�

whose dual implies that

f�Û1 + gK1� = C + O��
*
� �A17�

where C is an arbitrary real constant. Thus, with K1= �g2+k2�K1,
Eq. �A12� may be replaced by

M = − kf2N1 − �
*
�f�K1 + gfK1� − �1 − �1 − ��k2K1� + C

*



�A18�

where C*=g�1−��C. Obviously, Eqs. �A15� and �A18� imply that
M�+V=0.
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Aeroelastic Stability of Wide
Webs and Narrow Ribbons
in Cross Flow
Aeroelastic flutter can lead to large amplitude oscillations of tensioned wide webs and
narrow ribbons commonly used in the paper-handling, textile, sheet-metal, and plastics
industries. In this article, we examine the aeroelastic stability of a web or a ribbon, which
is submerged in an incompressible and inviscid fluid flow across its free edges. The web
or ribbon is modeled as a uniaxially tensioned Kirchhoff plate with vanishingly small
bending stiffness. A Galerkin discretization for the structural dynamics together with
panel methods for the unsteady three dimensional potential flow are used to cast the
coupled system into the form of a gyroscopic, nonconservative dynamical system. It is
found that wide webs mainly destabilize through a divergence instability due to the
cross-flow-induced conservative centrifugal effects. However, for certain values of ap-
plied tension, the wake-induced nonconservative effects can destabilize the web via a
weak flutter instability. Contrarily, narrow ribbons in cross flow are nearly equally likely
to undergo flutter or divergence instability depending on the value of applied tension.
�DOI: 10.1115/1.2871192�

1 Introduction and Background
The term web refers to thin uniaxially tensioned flexible media

transported through a series of rollers while remaining unsup-
ported at the remaining edges. Ribbons are narrow webs with
small width to length ratio. Wide webs and narrow ribbons find
wide use in industrial settings such as in the paper, textile, sheet
metal, and plastics manufacturing industries, as well as in data
storage tapes. Large amplitude web vibrations characterized as
aeroelastic flutter have been known to occur especially in high-
speed lines handling lightweight materials. Large amplitude vibra-
tions increase the probability of breakage and lead to poor manu-
facturing quality and considerable financial losses due to machine
downtimes. The commonly observed phenomenon of flow-
induced instabilities of tensioned barricade or caution tapes is yet
another example of this category of problems. In this article, we
focus on the influence of cross flow on the aeroelastic stability of
webs and ribbons.

Compared to the classical panel flutter problems �1� in the lit-
erature, a distinguishing feature of webs and ribbons is their van-
ishingly small bending stiffness and the application of tension
only along the web or ribbon axis. This results in very close fre-
quency spacing of a large number of cross-span modes, a phenom-
enon referred to as frequency clustering �2� in the literature. Such
clustered modes present the possibility of complex modal interac-
tions and rich dynamical behavior in uniaxially tensioned webs
that are not possible in biaxially tensioned or stiff plates.

Air flows are generated around the web �in the axial as well as
the cross-span direction� by the interaction of the moving web and
surrounding air or are sometimes generated externally. For ex-
ample, in a printing process, when the web passes through a dryer,
air is blown over the web, thus providing a steady flow parallel to
the web. When studying web dynamics, several interesting cases
involving moving and stationary webs coupled to either a quies-
cent fluid or a steady fluid flow �axial or cross flow� can be con-
sidered. However, experimentally, it has been observed �3,4� that
webs are most susceptible to cross-flow-induced flutter, even at

zero or low web transport speeds. Moreover, cross flow over the
free edges of the web gives rise to wake vortices. These wake
vortices can lead to complex interactions between the clustered
cross-span modes. For these reasons, the primary goal of this ar-
ticle is to model and investigate the aeroelastic stability of station-
ary webs and ribbons in cross flows.

Comprehensive literature reviews on the aeroelasticity of plates
and shells can be found in the monographs by Dowell �5� and
Paidoussis �6�. However, the aeroelasticity of webs and ribbons
remains a sparsely studied topic. Raman et al. �2� study the effect
of surrounding incompressible and inviscid fluid on axially mov-
ing paper webs. Guo and Paidoussis �7� investigate the linear
stability of a plate immersed in a channel flow. Tang et al. �8�
study the aeroelastic flutter of elastic panels �clamped at the lead-
ing edge� using a theoretical model with structural nonlinearities
and reduced-order linear aerodynamics. Niemi and Pramila �9�
present the finite element method �FEM� analysis of a linear mem-
brane �with artificial tension along the cross-span direction�
coupled to an incompressible, inviscid, and initially quiescent
flow. Frondelius et al. �10� present the vibration characteristics of
a moving band coupled to a viscous air flow using an analytical
boundary layer model. Chang and Moretti �11� present a theoret-
ical study by modeling the web as a tensioned infinitely wide
Kirchhoff plate with base flow in the cross machine direction. The
theoretical model in the work of Watanabe et al. �12� predicts the
onset of flow-induced instabilities with a 1D beam model of the
plate with clamped-free boundary conditions. Watanabe et al. �4�
present flutter experiments on stationary paper sheets clamped at
the leading edge and uniaxially tensioned webs with cross flow.
Experimentally observed flutter in webs is also reported in the
work of Hill �3�, Chang and Moretti �13�, and Chang et al. �14�.
Finally, Vaughan and Raman �15� and Vaughan �29� model the
web as a Kirchhoff plate surrounded by incompressible and invis-
cid fluid, but the fluid flow model does not include the effects of a
trailing edge wake. These effects could be important for the cross
flow problem considered in the current work.

In this article, the vibrations of a uniaxially tensioned stationary
web coupled to a surrounding incompressible inviscid fluid flow-
ing in the cross span direction are investigated. The focus is
placed on understanding the influence of nonconservative effects
of trailing edge wakes on the clustered modes of tensioned webs,
and on the role of aspect ratios and the applied tension in sup-
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pressing or enhancing aeroelastic stability. The article is organized
in the following fashion. In Sec. 2, the details of the web and fluid
models are presented. In Sec. 3, the equations of motion are dis-
cretized using Galerkin’s method. The solution of the fluid flow
problem using the vortex-lattice method and the details of the
coupled eigenvalue problem are presented in Sec. 4. A discussion
on the computational issues is presented in Sec. 5. In Sec. 6, we
present numerical results for the different cases of interest. Fi-
nally, in Sec. 7, we summarize the main results of the present
work.

2 Modeling
Figure 1 shows the system under consideration. The rectangular

web is modeled as a flat, isotropic, linearly elastic, and uniaxially
tensioned Kirchhoff plate. The web has a length a �along the X
axis�, width b �along the Y axis�, thickness h, and is supported at
x=−a /2 and x=a /2 by two rollers such that the right-handed
Cartesian coordinate system XYZ has its origin at the center of the
web.

A steady flow of velocity V� is incident on the web along the Y
axis. The fluid flow in the three dimensional infinite domain sur-
rounding the web is assumed to be incompressible and inviscid. In
the X-Y plane, a linearized wake �having width a and negligible
thickness� �16� emanating from the trailing edge of the web and
extending to infinity downstream is assumed to exist. For small
amplitudes of web oscillation, it can be shown that the flow re-
mains attached to the web near the leading edge and a leading
edge wake is absent �7,17,18�. The effects of the drag force �due
to the viscous boundary layer� along the Y direction are not con-
sidered in this model.1 It is assumed that the fluid flow comprises
of a steady base flow and small perturbations to this base flow
caused by the web motion. These assumptions give the following
set of dimensionless equations for the coupled fluid-structure
problem:

w ,tt + ��4w − w ,xx = 2����x,y,0+,t� ,t + V��x,y,0+,t� ,y�
�1�

�2� = 0

where

w =
w�

a
, x =

x�

a
, y =

y�

a
, z =

z�

a

t =
t�

a
�Nxx�

�
, ��x,y,z,t� =

���x�,y�,z�,t��

a�Nxx� /�
, V =

V�

�Nxx� /�
�2�

� =
D

a2Nxx�
, � = a

�fluid

�
, � =

a

b

In Eqs. �1� and �2�, the primed variables denote dimensional quan-
tities, whereas the unprimed variables are the corresponding di-
mensionless quantities. w represents the out-of-plane web dis-
placement and ��x ,y ,z , t� is the antisymmetric �about the X-Y
plane� part of the perturbation aerodynamic potential. � is the
mass per unit area of the web, �fluid is the fluid density, and D
=Eh3 /12�1−�2� is the bending stiffness of the web. E is Young’s
modulus of elasticity and � is Poisson’s ratio. Nxx� is the axial
tension per unit width of the web applied along the X axis. From
Eq. �2�, it can be seen that four nondimensional numbers �, �, �,
and V govern the dynamics of tensioned webs and ribbons sub-
jected to cross flow. � is the bending stiffness to tension ratio, � is
the density ratio, � is the web aspect ratio, and V is the nondi-
mensional cross flow velocity.

For small amplitude oscillations, the roller supports can be suit-
ably modeled as simple supports �19�. Accordingly, the web
boundary conditions are simply supported at the edges x=1 /2 and
x=−1 /2 and free at the edges y=1 / �2�� and y=−1 / �2��. The
boundary conditions for the fluid flow equations are derived by
matching the normal velocity of the web with the velocity of the
fluid particle at that location. Thus, on the web surface, the fol-
lowing must be true:

�� ,z�on the web = w ,t + Vw ,y �3�

where this boundary condition can be enforced on the Z=0 plane
for linear stability studies. Additionally, it is required that the far
field conditions be satisfied, that is,

��,n�as r→� = 0 �4�

where r=�x2+y2+z2, �·�,n represents ��·� /�n, and n denotes any
radial normal direction. Apart from the purely kinematical bound-
ary conditions specified in Eqs. �3� and �4�, the Kutta condition
�16,18� is enforced at the trailing edge of the web. The Kutta
condition �which is used to find the value of the trailing edge
vorticity shed into the wake� ensures that the solution to the fluid
flow equations is unique. In the case of flow behind an oscillating
web, the Kutta condition can be interpreted �18� as requiring the
pressure jump at the trailing edge of the web to be zero, that is,

��p�at the trailing edge = 0 �5�

where the pressure p�x ,y ,z , t�=�fluid��,t+V�,y� is obtained by us-
ing the linearized Bernoulli equation and the symbol �p refers to
the difference between the values of pressure above and below the
web.

3 Discretized Model
The Galerkin method, which is used to discretize Eq. �1�, em-

ploys the mass normalized in-vacuo eigenfunctions of a Kirchhoff
plate �with no applied tension� as its basis functions. Thus, we can
write the transverse web displacement as

w�x,y,t� = �
m=0

�

�
n=0

�

qmn�t�	mn�x,y� �6�

where qmn�t� represents the generalized coordinate of a basis func-
tion and the basis function 	mn�x ,y� is given by:

	mn�x,y� = Cmn sin��m + 1�
�x + 1/2���cosh��mny�

+ �mn cosh�
mny�� m = 0,1,2, . . . n = 0,2,4, . . .
�7�

	mn�x,y� = Cmn sin��m + 1�
�x + 1/2���sinh��mny�

+ �mn sinh�
mny�� m = 0,1,2, . . . n = 1,3,5, . . .

The values of coefficients �mn, 
mn, and �mn depend on the eigen-
values of the boundary-value problem defined by the first equation1See Sec. 6 for a discussion on the validity of this assumption.

b

a

X

Y

Z

N’xx

V’

w’(x’,y’,t’)

Fig. 1 A Schematic for the uniaxially tensioned stationary web
subjected to cross flow
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in �1� �with �=0, and the w,xx term neglected� and its correspond-
ing boundary conditions.

In order to solve the coupled fluid-structure equations in �1�, we
first compute the fluid flow solution corresponding to each struc-
tural basis function 	mn�x ,y�. For small amplitude motion of the
web, all these fluid flow solutions can be superimposed to obtain
an expansion for the perturbation aerodynamic potential. Using
this discretization approach, an expansion for the perturbation
aerodynamic potential ��x ,y ,z , t� is obtained under the assump-
tion that the web motion is purely oscillatory �which is also jus-
tified when the web motion has a very small rate of decay or
growth such as near the critical values of cross flow velocity cor-
responding to the onset of flutter instability �20,21��. Thus,
qmn�t�=�mnej�t, where �mn are complex numbers representing the
amplitude and phase of the mnth basis function and � is the fre-
quency of oscillation of the web. Substituting the expansion in �6�
into the right-hand side of Eq. �3� and assuming that the time
dependence of the perturbation aerodynamic potential ��x ,y ,z , t�
is the same as that of the web velocities, from Eqs. �1� and �3� for
each basis function 	mn, we obtain

�2�mn = 0 �8a�

�mn,ze
j�t = j��mn	mnej�t + V�mn	mn,ye

j�t �8b�

Equation �8a� and the associated boundary condition �8b� can be
subdivided into two boundary-value problems corresponding to
the perturbation aerodynamic potentials �mn1�x ,y ,z� and
�mn2�x ,y ,z�; �mn1�x ,y ,z� satisfies the first term on the right-hand
side of Eq. �8b� and �mn2�x ,y ,z� satisfies the second term on the
right-hand side of Eq. �8b�. Specifically, the two boundary-value
problems arising from each basis function 	mn�x ,y� are

�2�mn1 = 0 �9a�

�mn1,z�x,y,0� = 	mn�x,y� �9b�

and

�2�mn2 = 0 �10a�

�mn2,z�x,y,0� = 	mn,y�x,y� �10b�

The solutions of Eqs. �9a� and �10a� for all the values of m and n
can be added to obtain the expansion for perturbation aerody-
namic potential as

��x,y,z,t� = �
m=0

�

�
n=0

�

�j��mn�mn1�x,y,z�ej�t + V�mn�mn2�x,y,z�ej�t�

�11�

Using the expansion in Eq. �11�, the pressure differential
�p�x ,y , t� acting on the web �the right hand side of the first equa-
tion in Eq. �1�� is

�p�x,y,t� = �
m=0

�

�
n=0

�

2��mn�− �2�mn1 + j�V��mn1,y + �mn2�

+ V2�mn2,y�ej�t

= �
m=0

�

�
n=0

�

�mn�2��Amn�real + j2��Amn�imag�ej�t

= �
m=0

�

�
n=0

�

2��qmn�t���Amn�real� + q̇mn�t�	 �Amn�imag

�

�
�12�

The real part 2��Amn�real of the complex pressure differential acts
in phase with the web displacement, while the imaginary part
2��Amn�imag acts in phase with the web velocity. Furthermore, the

pressure differential terms �2�mn1, j�V��mn1,y +�mn2�, and
V2�mn2,y in Eq. �12� represent, respectively, the aerodynamic in-
ertia, the aerodynamic damping, and the aerodynamic stiffness.
All these pressure differential terms play different roles in the
onset of instabilities. Specifically, the aerodynamic stiffness or the
V2�mn2,y term is a centrifugal pressure term. In the discretized
fluid-web system, the symmetric matrix representing the V2�mn2,y
term is responsible for the fluid-induced reduction in stiffness of
the coupled fluid-web system. The antisymmetric matrix repre-
senting the V2�mn2,y term, which forms the circulatory terms in
the discretized system, leads to the onset of flutter instabilities in
webs and ribbons.

For discretizing the equations by Galerkin’s method, M �N
structural basis functions and their perturbation aerodynamic po-
tentials are retained and substituted into Eq. �1�. The resulting
residual terms are weighted by using the basis functions 	mn�x ,y�
and integrated over the domain, leading to the following dis-
cretized system of M �N equations:

�I��q̈
 + ��K1� + ��K2���q
 = 2�	�Areal��q
 +
�Aimag�

�
�q̇



�13�

In Eq. �13�, �I� is the identity matrix, which accounts for the web
inertia. The matrices �K1� and �K2� represent the structural mem-
brane stiffness and the bending stiffness, respectively. The matri-
ces �Areal� and �Aimag�: �a� represent, respectively, the real and
imaginary parts of the pressure differential acting on the web, �b�
are functions of the reduced frequency k= ��b� / �2V� �22�, and �c�
are nonsymmetric as a direct consequence of the inclusion of a
trailing edge wake in the fluid flow model. As a result, the coupled
fluid-structure system is a nonconservative dynamical system with
gyroscopic and circulatory forces. The definitions of the various
matrices in Eq. �13� are given in the Appendix.

4 Vortex-Lattice Method and the Coupled Eigenvalue
Problem

The perturbation aerodynamic potentials are numerically evalu-
ated for each structural basis function by using the vortex-lattice
method �18�. The solution methodology consists of dividing the
web into a series of panels, distributing vortex rings of unknown
strength in the panels on the web surface, and then evaluating
their strength so that the boundary conditions in Eqs. �9b� and
�10b� are satisfied.

In what follows, the arrangement of vortex rings on the web,
the resulting system of linear equations, and its solution to obtain
the perturbation aerodynamic potentials is described. A total of
R=2Nx�Ny rectangular panels �2Nx along the X direction and Ny
panels along the Y direction� are arranged on the surface of the
web �see Fig. 2� in the X-Y plane. A vortex ring of unknown
strength is placed on each panel at a distance of Ly /4 from the
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Fig. 2 A schematic representation showing the arrangement
of panels and vortex rings on the half-web and in the wake
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leading edge of the panel, and the control point �i.e., the point
where the structural and fluid velocities are matched� is located at
a distance of 3Ly /4 from the leading edge of each panel. Apart
from this, horseshoe vortices are located in the wake region start-
ing at a distance of Ly /4 from the trailing edge and extending until
infinity downstream.

The unknown strengths of the R web vortex ring panels de-
scribed above are determined by fluid-structure velocity matching
enforced at the R control points. This velocity matching results in
a system of linear equations:

�
11 ¯ 
1R

] � ]


R1 ¯ 
RR
���1

]

�R
� = ��1

]

�R
� �14�

where �i�i=1,2 , . . . ,R� denote the unknown vortex strengths of
the R panels and 
ij�i , j=1,2 , . . . ,R� represents the velocity in-
duced at the ith control point by a unit strength vortex ring at the
jth panel. The expression for the coefficient 
ij can be found in
Ref. �18�. �i�i=1,2 , . . . ,R� on the right-hand side of Eq. �14� rep-
resent the Z-direction velocity of the fluid at the ith control point.
The Kutta condition is enforced by assuming that the strength of
the wake horse shoe vortex is equal to the last structural panel �see
Fig. 2�. The linear system described in Eq. �14� is used to solve
the boundary-value problem of Eqs. �9a� and �9b� �the solution of
the boundary-value problem of Eqs. �10a� and �10b� follows an
identical procedure�. This procedure is presented next.

Given the structural basis function 	mn�x ,y�, the goal is to use
Eq. �14� to find the perturbation aerodynamic potential
�mn1�x ,y ,z�. Following the work of Von Kármán and Sears �23�,
�mn1�x ,y ,z� is divided in two parts: the quasisteady solution
��mn1�quasisteady and the correction ��mn1�wake due to the harmonic
vortex shedding in the wake. The velocity potential
��mn1�quasisteady can be thought of as the instantaneous response of
the fluid to the structural motion. Then, in order to evaluate
��mn1�quasisteady, the basis function 	mn�x ,y� is evaluated at the R
control points and these values form the right-hand side of Eq.
�14�. The solution of Eq. �14� yields �i�i=1,2 , . . . ,R�, which is
mapped to obtain ��x ,y�. Moreover, ��mn1�quasisteady is obtained
by using ��mn1�quasisteady�x ,y ,0+�=��x ,y� /2. The quasisteady so-
lution ��mn1�quasisteady determined above gives rise to harmonically
varying wake vortices �23�. The image vortices �formed on the
web� that nullify the effect of this harmonically varying wake
result in ��mn1�wake. The procedure to find ��mn1�wake involves
applying Kelvin’s theorem �23� and solving Eq. �14� such that the
normal flow �at the R control points� caused by the wake is nul-
lified. Once the solution ��mn1�wake is known, the perturbation
aerodynamic potential caused by the basis function 	mn�x ,y� is
simply the sum of ��mn1�quasisteady and ��mn1�wake.

The perturbation aerodynamic potentials obtained with the
above procedure are used to evaluate the pressure differential �see
Eq. �12�� and then substituted in Eq. �13� to obtain the coupled
eigenvalue problem. The complex eigenvalues �which represent
decaying or growing oscillatory web motion� of the coupled ei-
genvalue problem need to be evaluated using an iterative method
known as the p-k method �20�. The numerical results obtained by
using the p-k method are presented in Sec. 6 after a discussion of
the computational issues in Sec. 5.

5 Computational Issues
The perturbation aerodynamic potential solutions �mn1�x ,y ,z�

and �mn2�x ,y ,z� are evaluated numerically using computer pro-
grams written in the C�� language. The linear system of Eq. �14�
is column block partitioned and solved by using the LU decom-
position method. The computations were performed by using the
parallel computing machines at the Rosen Center for Advanced
Computing, Purdue University, West Lafayette, IN.

The vortex-lattice fluid solver developed here is bench-marked
with the results in the work of Lawrence and Gerber �24� �error of
less than 2% in the lift coefficient and error of less than 0.5% in
the phase angle for a 3D plate performing heaving motion were
obtained�. Certain simplifications to reduce the computational ef-
fort can be made while numerically solving the fluid flow prob-
lem. First, symmetry of the fluid domain about the Y-Z plane is
invoked. Symmetry reduces the number of unknowns in Eq. �14�
to just R=Nx�Ny. Second, it is observed in the full three dimen-
sional solution �see Fig. 3� that the vortex ring strength varies
sinusoidally along the X direction �a direct consequence of all
structural basis functions behaving sinusoidally along the X direc-
tion�. This implies that for a given panel row along the X direction
�see Fig. 2�, the unknown strengths are simply sin��m+1�
�x
+1 /2���m=0,1 ,2 , . . . � multiples of the first panel. This provides
an additional �Nx−1��Ny constraint equations in conjunction
with the linear system in Eq. �14�. It should be noted that this
simplification does not reduce the dimension of the fluid flow
problem from 3 to 2, but simply reduces the number of unknowns
in Eq. �14� from R=Nx�Ny to R=Ny.

Variation in the predicted web frequencies with �a� change in
the number of vortex ring panels and �b� change in the number of
basis functions in the Galerkin expansion is studied in order to
ensure converged numerical results. It was found that the pre-
dicted web frequencies and the predicted rates of growth change
by less than 1% when more than Ny =5000 vortex panels were
used. Moreover, up to 27 structural basis functions along the Y
direction are needed to obtain converged web frequencies and
rates of growth �relative percentage change of less than 1%�.
These convergence studies were performed over a range of cross
flow velocities V both near and away from the point of onset of
instabilities.

6 Aeroelastic Stability
We now turn our attention to the predictions of the aeroelastic

stability of webs and ribbons as a function of cross flow speed V,
the aspect ratio � �the length to width ratio�, and the ratio � of web
bending stiffness to the applied tension. The computations per-
formed below use realistic web properties. Young’s modulus and
Poisson’s ratio are estimates for paper web properties from the
literature �11�. The spanwise length, thickness, tension, and area
density of the web are taken from Vaughan �29�. The following
numerical values were used for the web dimensions and material
properties:

a = 1.372 m, h = 25.4 � 10−6 m, � = 40 g/m2

E = 6.8 GPa, � = 0.3, �fluid = 1.225 kg/m3
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Furthermore, the width ranges from b=0.0457 m to 1.372 m and
the applied tension ranges from Nxx� =1.08 N /m to 985.64 N /m.
This corresponds to nondimensional numbers of �=42, � varying
from 1 to 30, and � varying from 5.5�10−9 to 5�10−6.

In all the calculations presented, the Galerkin expansion uses
M =1 and N=27. For a given cross flow velocity V, the frequen-
cies and the rates of growth of the web or ribbon displacement are
obtained by solving the coupled fluid-web eigenvalue problem
using the p-k method. The components of the resulting eigenvec-
tor are used to weight the structural basis functions to yield the
complex mode shape of the web or the ribbon. Flutter instability is
said to occur whenever the rate of growth associated with the
nonzero frequency of a mode becomes positive. Divergence insta-
bility is said to occur when the frequency associated with a par-
ticular mode is zero and the rate of growth has a positive sign.
First, the results on aeroelastic stability of webs are presented,
which are followed by the aeroelastic stability of ribbons. Finally,
a comparison between the aeroelastic characteristics of webs and
ribbons is provided.

6.1 Aeroelastic Stability of Webs. For the numerical results
presented in this section, a web aspect ratio of �=1 was chosen.
Unless otherwise mentioned, all web calculations assume �=42
and �=5�10−6 �corresponding to a=1.372 m and Nxx�
=1.08 N /m�.

6.1.1 Web Mode Shape Dependence on the Cross Flow
Velocity. At zero cross flow velocity, the effect of the surrounding
air is that of an added mass on the web. Figures 4�a� and 4�b�
show the first in-vacuo mode of the web and the first mode of the
coupled fluid-web system, respectively. The added mass effect of
the surrounding fluid near the free edges of the web causes sig-
nificant reduction in the displacement of the free edges. The rela-
tive contributions of the structural basis functions to this mode of
the coupled fluid-web system are shown in Fig. 4�c�. The first
mode shape of the fluid-web system comprises only of those
structural basis functions that are symmetric about the X-Z plane.

With increasing cross flow velocity V, the relative contributions
of the structural basis functions start changing. At nonzero cross
flow velocities, the mode shapes of the coupled fluid-web system
are complex. These complex mode shapes are represented by plot-
ting the envelope, the phase, and the relative contribution of the
structural basis functions. Note that only the dependence along the
Y direction is shown �while the dependence along the X direction
is sinusoidal�. Figure 5 shows the envelope, the phase, and the
structural basis content of the first web mode at cross flow veloci-
ties of V=0.035, 0.045, and 0.055. As the cross flow velocity V is
increased, the relative contributions from the higher basis func-
tions increase, while those from the lower basis functions de-
crease. This is due to the flow-induced loss in stiffness associated

with the higher basis functions.2 With increasing cross flow veloc-
ity V, the first web mode shape increasingly localizes near the
leading edge. It is interesting to note that unlike the first mode, the
higher modes �not shown here� do not show edge localization with
increasing cross flow velocity.

6.1.2 Web Frequency Dependence on the Cross Flow Velocity.
Consider the behavior of the natural frequencies as a function of
the cross flow velocity. The natural frequencies and the corre-
sponding rates of growth of the first five modes of the web are
shown in Fig. 6. As the flow velocity is increased, all the natural
frequencies decrease. For such small values of �, a notable feature
of these frequency loci3 is that the frequencies of the higher
modes decrease at a faster rate compared to the lower modes
�again the reason is large pressure differentials associated with the
higher basis functions�. As a consequence, the frequency loci ei-
ther appear to cross �the apparent frequency crossing does not
imply curve intersection because of the different rates of growth
associated with each curve� or exhibit the frequency curve veering
phenomenon �26� accompanied by the exchange of mode shapes.
For example, in Fig. 6, veering occurs between the first and the
second, and the second and the fourth mode. These instances of
frequency curve veering are accompanied by exchange of mode
shapes. Furthermore, as shown in Fig. 6, the frequency of the first
mode becomes zero at a nondimensional velocity of V�0.0585
and the coupled system loses stability by divergence. The corre-
sponding rate of growth of the first mode splits into a positive real
and a negative real part.

Interestingly, the coupling between the third and the fifth mode
leads to a weak flutter instability �see Fig. 6 and the inset� for a
small velocity range of V�0.0523–0.0529, when the rate of
growth of the third mode becomes positive. This indicates the
appearance and the disappearance of the flutter instability before

2For higher basis functions, a fluid particle traveling tangentially to the web sur-
face turns through smaller radii of curvature, giving rise to larger centrifugal pres-
sures, which in turn leads to a more rapid fluid-induced reduction in stiffness com-
pared to the lower basis functions.

3Based on the large Reynolds number and the small web oscillation amplitude, the
use of the unsteady Kutta condition is valid �18,25� even at such high reduced
frequencies k= ��b� / �2V� ranging from 0 to 15.
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the occurrence of the divergence instability. In the absence of
wake-induced nonconservative effects, flutter instability can only
occur after the divergence instability. This implies that the non-
conservative effects caused by the trailing edge wake are respon-
sible for this flutter instability. The flutter instability is termed
weak because the corresponding rate of growth is very small.

6.1.3 Effect of Applied Tension on the Onset of Instabilities in
Webs. The results presented so far have been for a fixed, realistic
value of �. To study the effect of tension on the onset of instabil-
ity, the ratio � is varied from 2�10−6 to 6�10−6. Figure 7 shows
the graph of the dimensional critical flow velocity V versus the
parameter �. It can be seen that increased values of applied tension
�decreased values of �� lead to occurrence of divergence instabil-

ity at higher cross flow velocities. The reason for this behavior is
that increasing the applied tension increases the stiffness of the
web and makes it more resistant to the divergence instability.

The occurrence of flutter over a small velocity interval between
points B and C is attributed to the coupling between the third and
the fifth mode. An interesting aspect of this flutter instability
caused by the interaction of the third and fifth modes is that it
does not occur for all values of �, but only over a small range of
�=4.5�10−6–5.9�10−6. At even lower values of �, flutter insta-
bility disappears. Further reduction of � causes the flutter instabil-
ity to reappear, but now due to coupling between a pair of higher
modes.

An important conclusion from this behavior is that the spanwise
applied tension plays a crucial role in the occurrence of flutter. For
most � values, the web loses stability via divergence instability.
However, for some ranges of � values, two closely spaced modes
under the influence of the nonconservative wake effects can inter-
act to produce flutter instability prior to divergence. These conclu-
sions are valid for wide webs with free leading and trailing edges,
with fluid flow across the free edges. For webs with constrained
leading edges �13�, the aeroelastic stability predictions can be dif-
ferent from the ones presented above.

6.2 Aeroelastic Stability of Ribbons. Next, the aeroelastic
stability characteristics of a narrow ribbon are investigated. A rib-
bon of length a=1.372 m �which corresponds to �=42� and an
aspect ratio of �=30 is chosen. Two sets of results corresponding
to �=5�10−6 �the same � value as used for wide webs� and �
=5.5�10−9 �an � value corresponding to significantly increased
applied tension� are presented.

6.2.1 Frequencies and Mode Shapes of a Narrow Ribbon. For
a ribbon with �=5�10−6, the frequencies and the rates of growth
of the lowest two modes are shown in Fig. 8�a�. The frequencies
of the third and higher modes are spaced away from these two
frequency curves and are not shown in this figure. The motion
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corresponding to the lower frequency is dominated by the in-
vacuo torsional mode of the ribbon �pitching motion about the X
axis with a sinusoidal shape along the X direction�. The envelope,
the phase, and the relative contributions of the two participating
structural basis functions for the first ribbon mode �at V=0.03� are
shown in Fig. 9�a�.

The larger of the two frequencies in Fig. 8�a� corresponds to the
heaving-motion-dominated mode of the ribbon �see Fig. 9�b� for
the envelope, the phase, and the structural basis function content
at V=0.03�. With increasing cross flow velocity, the frequency for
this mode remains approximately constant. This is expected be-
cause the heaving motion does not produce significant flow gra-
dients along the Y direction, thereby not producing the associated
aerodynamic pressure differentials. This causes the frequency of
the heaving-motion-dominated mode to remain approximately
constant as cross flow velocity increases, while that corresponding
to the torsional-motion-dominated mode reduces with increasing
cross flow velocity.

The frequencies and the rates of growth for the lowest four
modes for a high tension ribbon with �=5.5�10−9 are shown in
Fig. 8�b�. At a nondimensional velocity V�0.0139, the rate of
growth of the fourth mode becomes positive, indicating flutter
instability. At yet larger flow velocity V�0.022, the first mode
starts fluttering followed by divergence instability of the first
mode at V�0.0245. The envelope, the phase, and the structural
basis function content corresponding to the fluttering mode at V
=0.0139 are shown in Fig. 9�c�.

6.2.2 Effect of Applied Tension on the Onset of Instabilities in
Ribbons. It is clear from Figs. 8�a� and 8�b� that for high tension
�low ��, the initial ribbon frequencies are closely spaced while for
lower tension, the ribbon frequencies move apart. The spanwise
applied tension changes the relative spacing between different rib-
bon frequencies, thereby changing the modal coupling. Increased
modal coupling �due to increased applied tension� can lead to the
occurrence of flutter instability. Consequently, low tension ribbons
destabilize via divergence �flutter instability cannot occur due to
the low modal coupling�, while high tension ribbons appear to
destabilize via flutter prior to their onset of divergence. Thus,
changing the applied tension can lead to a change in the type of
instability exhibited by the ribbon. The role of applied tension in
the occurrence of instability for a ribbon can be investigated by

plotting the stability boundaries on the V-� plane.
As shown in Fig. 10, for the values of ��5.8�10−8 and above,

the ribbon loses stability through divergence of the first mode. For
values of � less than 5.8�10−8, flutter instability occurs before the
occurrence of the divergence instability. In the V-� plane, at point
E, both the flutter and divergence instabilities occur simulta-
neously. The shaded regions in Fig. 10 signify the occurrence of
flutter instability or divergence instability or the simultaneous oc-
currence of both instabilities.

6.3 Comparison of Wide Webs and Narrow Ribbons. The
aspect ratio �, and �, the ratio of bending stiffness to applied
tension of the web, play a crucial role in the modal interactions
and the onset of divergence or flutter instability. In order to point
out the important differences between wide webs and narrow rib-
bons, consider the frequency loci of three representative webs
having the same length a=1.372 m, the same ratio �=5�10−6,
but different aspect ratios �=1, 5, and 30. These loci are shown in
Fig. 11. At �=5�10−6, the narrow ribbon ��=30� does not show
a flutter instability, while the wide ribbon ��=5� loses stability by
flutter. The wide web ��=1� shows a weak flutter instability be-
fore the occurrence of divergence instability.

The differences between the behavior of wide webs and narrow
ribbons are as follows:

• For a fixed value of �, the frequencies of wide webs are
clustered closely while they are further apart for narrow rib-
bons. As a consequence, the possibility of modal interac-
tions due to nonconservative wake effects is greater in wide
webs.
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• The flow-induced change in frequencies for a wide web is
small when compared to change in frequencies for a narrow
ribbon.

• The flutter instability exhibited by wide webs is weak and
occurs only over small intervals of velocity. Narrow ribbons
and intermediate aspect ratio webs do not exhibit this be-
havior.

• For narrow ribbons, when � is below a critical value, the
ribbon destabilizes by flutter �see Fig. 10�. This behavior is
absent in the case of wide webs �see Fig. 7�.

6.4 Discussion of Results. Wide webs and narrow ribbons of
the same length but different widths exhibit different behaviors
�see Figs. 6, 8, and 11�. The differences between the behavior of a
wide web ��=1� and a narrow ribbon �some ��1� can be ex-
plained by writing the discretized equations of motion4 as follows:

�I��q̈web


struct inertia

+ �K1��qweb


memb stiff

+ ��K2��qweb


bend stiff

= 2���M� + V�G1� + V�G2� + V2�K���qweb


aerodyn press �15a�

�I��q̈rib

struct inertia

+ �K1��qrib

memb stiff

+ ��K2��qrib

bend stiff

= 2�	 1

�
�M� + V�G1� + V�G2� + �V2�K�
�qrib


aerodyn press �15b�

Equation �15a� is a special case of Eq. �15b� when �=1. Since the
basis functions are mass normalized, the membrane stiffness
scales as �K1�web��K1�rib. However, the bending stiffness for rib-
bons scales such that �K2�rib� �K2�web because for a ribbon, the
curvature of the structural basis functions along the Y direction is
large. Moreover, the aerodynamic pressure differential matrices
scale, as shown in Eq. �15b�. Specifically, compared to a web, the
V2�K� pressure differential matrix is � times larger for a ribbon
due to the large flow gradients along the Y direction.

For a fixed value of applied tension �represented by ��, it is
interesting to note that as the width is reduced �� is increased�,
there are two competing effects governing the occurrence of flut-
ter: �a� the increased bending stiffness reduces the modal interac-
tions by increasing the frequency spacing, and �b� the V2�K� pres-
sure differential term increases the modal interactions by
increasing the antisymmetric stiffness terms �i.e., the circulatory
terms responsible for flutter instability�. The actual rate of growth
associated with a flutter instability is, however, decided by the
relative magnitudes of the membrane stiffness term and the V2�K�
pressure differential term. Thus, for a wide web, clustered fre-
quencies lead to flutter, but the instability is weak due to the small
magnitudes of the V2�K� pressure differential terms. For a narrow
ribbon, as seen in Fig. 11, although the V2�K� pressure differential
terms are large, the widely spaced frequencies lead to low modal
interactions and the absence of flutter. For the intermediate case of
�=5, where flutter does occur, the rate of growth is large because
the V2�K� pressure differential terms are large compared to the
membrane stiffness terms.

The theoretical model presented in this article does not include
a viscous drag force. If included, this viscous drag force intro-
duces a follower force term 1

2�fluidV2CDw,y on the right-hand side
of Eq. �1�, where CD is the viscous drag coefficient calculated
based on the Blasius boundary layer �27,28�. Preliminary calcula-

tions after including this viscous drag force show that �a� for wide
webs with extremely small bending stiffness, the aeroelastic sta-
bility predictions change qualitatively when compared to the pre-
dictions in the current article, �b� the predictions for narrow rib-
bons also change qualitatively, though narrow ribbons are less
affected compared to wide webs, �c� the quantitative shift in the
eigenvalue �oscillation frequencies and growth rates� predictions
of stability for wide webs as well as narrow ribbons is small, and
�d� webs and ribbons with large bending stiffness D are relatively
less affected by the drag force when compared to webs and rib-
bons with smaller D. Thus, the inclusion of the drag force could
become important for wide webs with extremely small bending
stiffness, while for wide webs with moderately large bending stiff-
ness, the predictions of the current article are valid.

The theoretical predictions from the current work cannot be
directly compared with the experimental data available in the lit-
erature. Experimental data on uniaxially tensioned webs in cross
flow have been reported in the works of Chang and Moretti �11�
and Watanabe et al. �4�. Specifically, it has been shown by Wa-
tanabe et al. �4� �see Fig. 17 of this reference� that the experimen-
tal data collapse on a straight line in the log�V�� /�� versus
log�� /�� plane. However, the leading edge of the web is con-
strained in the experiments of Chang and Moretti �11� �see Fig. 5
of this reference� and Watanabe et al. �4� �see Fig. 14 of this
reference�. The situation of a web with fluid flow across its two
free edges is more complicated when compared to the experiments
in the existing literature. Experiments with these practically im-
portant boundary conditions need to be performed in order to
verify the findings in this work.

7 Conclusions
Tensioned wide webs and narrow ribbons are widely used in the

paper-handling, textile, plastics, and sheet metal industries. These
webs are often subjected to air flows that lead to aeroelastic flutter
problems. The work presented in this article addresses this broad
category of problems by tackling a specific problem of flow-
induced vibrations of stationary wide webs and narrow ribbons in
cross flow.

For wide webs, the clustered modes interact with one another
and give rise to frequency veering. The nonconservative effects
caused by the trailing edge wake destabilize the webs near the
occurrence of frequency curve veering and apparent frequency
curve intersections. However, this flutter instability in wide webs
is weak and wide webs mainly lose stability by divergence. On the
other hand, depending on the value of applied tension, narrow
ribbons can lose stability either through flutter or divergence.
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Appendix
The definition of various matrices in Eqs. �13�, �15a�, and �15b�

are as follows:

�K1�ij;mn =�
x=−1/2

1/2 �
y=−1/�2��

1/�2��

	ij,x�x,y�	mn,x�x,y�dydx
4See the Appendix for the definition of the various matrices.
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�K2�ij;mn

=�
x=−1/2

1/2 �
y=−1/�2��

1/�2�� �
	ij,xx�x,y�	mn,xx�x,y�

+ 	ij,yy�x,y�	mn,yy�x,y�
+ 2�1 − ��	ij,xy�x,y�	mn,xy�x,y�

+ �	ij,xx�x,y�	mn,yy�x,y�
+ �	ij,yy�x,y�	mn,xx�x,y�

�dydx

�Areal�ij;mn = Re��
x=−1/2

1/2 �
y=−1/�2��

1/�2��

	ij�x,y�

��− �2�mn1�x,y� + j�V�mn1,y�x,y�

+ j�V�mn2�x,y� + V2�mn2,y�x,y�
�dydx�

�Aimag�ij;mn = Im��
x=−1/2

1/2 �
y=−1/�2��

1/�2��

	ij�x,y�

��− �2�mn1�x,y� + j�V�mn1,y�x,y�

+ j�V�mn2�x,y� + V2�mn2,y�x,y�
�dydx�

�M�ij;mn =�
x=−1/2

1/2 �
y=−1/2

1/2

	ij�x,y��− �2�mn1�x,y�
dydx

�G1�ij;mn =�
x=−1/2

1/2 �
y=−1/2

1/2

	ij�x,y��j��mn1,y�x,y�
dydx

�G2�ij;mn =�
x=−1/2

1/2 �
y=−1/2

1/2

	ij�x,y��j��mn2�x,y�
dydx

�K�ij;mn =�
x=−1/2

1/2 �
y=−1/2

1/2

	ij�x,y���mn2,y�x,y�
dydx
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Snapping of a Planar Elastica
With Fixed End Slopes
In this paper, we study the deformation and stability of a planar elastica. One end of the
elastica is clamped and fixed in space. The other end of the elastica is also clamped, but
the clamp itself is allowed to slide along a linear track with a slope different from that of
the fixed clamp. The elastica deforms after it is subjected to an external pushing force on
the moving clamp. It is observed that when the pushing force reaches a critical value,
snapping may occur as the elastica jumps from one configuration to another remotely
away from the original one. In the theoretical investigation, we calculate the static
load-deflection curve for a specified slope difference between the fixed clamp and the
moving clamp. To study the stability of the equilibrium configuration, we superpose the
equilibrium configuration with a small perturbation and calculate the natural frequencies
of the deformed elastica. An experimental setup is designed to measure the load-
deflection curve and the natural frequencies of the elastica. The measured load-deflection
relation agrees with the theoretical prediction very well. On the other hand, the measured
natural frequencies do not agree very well with the theoretical prediction, unless the mass
of the moving clamp is taken into account. �DOI: 10.1115/1.2871207�

1 Introduction
Snap-through buckling in structures is a violent transition from

one stable equilibrium position to another equilibrium position
remotely away from the original one. For instance, a shallow arch
with both ends fixed in space and under transverse loading may
undergo snap-through buckling when certain conditions on the
arch height and load are met; see the pioneering works of Timosh-
enko �1� and Bruce and Hoff �2�. Similar snap-through buckling
phenomena can also be observed in the case of a shallow shell
under lateral load; see the work of Budiansky and Roth �3�. Many
more references on the snap-through phenomena in structures,
such as shallow arches, shallow spherical caps, and cylindrical
shells, can be found in the book by Simitses �4�. The term “snap
through” is adopted because during buckling the structures snap
from one side of the base plane “through” to the other side.

In this paper, we present a new snapping phenomenon observed
in a clamped-clamped planar elastica, in which one clamp is fixed
in space while the other is sliding along a linear track with a slope
different from the one at the other end. Both theoretical and ex-
perimental results are presented. This structure may be used as a
compliant mechanism in mechanical design �5,6�. In transmission
of motion or force between two locations, compact space such as
in miniature devices usually makes the conventional rigid body
joint pairs impractical. In such a case, a flexible elastica capable
of large deformation may be the only choice.

2 Problem Formulation
We consider a uniform beam with length L and flexural rigidity

EI. The two ends of the beam are denoted as A and B, as shown in
Fig. 1. An xy-coordinate system with origin attached to End A is
chosen to describe the geometry of the beam. The rotation angles
of the beam at Ends A and B with respect to the x axis are speci-
fied as �A=0 and �B, respectively. End B is clamped and fixed in
space. End A is also clamped, but the clamp itself is allowed to
slide on a straight line. In its initial configuration without any
external pushing force in the longitudinal direction at End A, the

neutral axis of the beam is a circular arc with radius r. The bend-
ing moment along the deformed beam is a constant in this initial
configuration. It is noted that the beam may be termed an elastica,
whose mechanics investigation was initiated by Euler and
Lagrange over two centuries ago �7�. The relations between some
geometric parameters are

L = r�B, xB = r sin �B, yB = r�1 − cos �B� �1�

where xB and yB are the x, y coordinates of Point B. The equations
governing the motion of the elastica will be formulated first.

Figure 2 shows the free body diagram of an element ds of the
elastica after End A is pushed in a distance �A. Forces Fx and Fy
are in the x and y directions, and M is the bending moment. � is
the rotation angle of the tangent. First of all, from geometric re-
lation we can write

�x

�s
= cos � �2�

�y

�s
= sin � �3�

where s is the length of the elastica measured from Point A. From
the balance of moment and forces in the x and y directions, we can
derive the following three equations:

�M

�s
= Fx sin � − Fy cos � �4�

�Fx

�s
= �

�2x

�t2 �5�

�Fy

�s
= �

�2y

�t2 �6�

where � is the mass per unit length of the elastica. x�s , t� and
y�s , t� represent the deformed shape of the elastica. The moment-
curvature equation from Euler–Bernoulli beam model is

��

�s
=

M

EI
�7�

The six equations �2�–�7� govern the motion of the elastica. In the
case when only static deformation is of interest, the terms involv-
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ing differentiation with respect to time in Eqs. �5� and �6� can be
neglected.

3 Static Deformation
We first study the static deformation of the elastica after End A

is pushed in a distance �A. There exist three different types of
deformation configurations; they are the deformations with zero,
one, and two inflection points. In this paper, we present the solu-
tion procedure for the deformation with two inflection points. The
solution procedures for the other two simpler cases with zero and
one inflection point are similar and can be found in the thesis of
the second author �8�.

Figure 3 shows an elastica with two inflection Points C and D.
End A is under longitudinal force PA and is pushed in a distance
�A in the horizontal direction. The shear force and bending mo-
ment at End A are QA and MA, respectively. It is noted that in this
static analysis we use the tangential component P �longitudinal
force� and the normal component Q �shear force� on the cross
section instead of using Fx and Fy, as depicted in Fig. 2. Fx and Fy
will be used in dynamic analysis later. P and Q can be related to
Fx and Fy in the following relations:

P = − Fx cos � − Fy sin �, Q = − Fx sin � + Fy cos � �8�

The moment equation at any point �x ,y� of the elastica can be
written as

EI
d�

ds
= MA − PAy − QAx �9�

For convenience, we introduce the following dimensionless pa-
rameters �with asterisks�:

�s*,x*,y*,�
A
*� =

�s,x,y,�A�
L

,

�P*,Q*,F
x
*,F

y
*� =

L2

4�2EI
�P,Q,Fx,Fy�

M* =
L

4�2EI
M, t* =

1

L2�EI

�
t, �* = L2� �

EI
�, m

c
* =

1

�L
mc

where � is a circular frequency of the elastica. mc is the mass of
the moving clamp, which will be used in dynamic analysis later. It
is noted that P*=1 corresponds to the Euler buckling load of a
clamped-clamped straight beam. After substituting the above rela-
tions into Eq. �9� and dropping the asterisks thereafter for simplic-
ity, Eq. �9� can be written in dimensionless form as

d�

ds
= 4�2�MA − PAy − QAx� �10�

Similarly, Eqs. �5�–�7� can be rewritten in the following forms:

�Fx

�s
=

1

4�2

�2x

�t2 �5��

�Fy

�s
=

1

4�2

�2y

�t2 �6��

��

�s
= 4�2M �7��

It is noted that the dimensionless versions of Eqs. �2�–�4� remain
the same as the dimensional versions. By differentiating Eq. �10�
with respect to s once, and using the relations �2� and �3�, we
obtain

d2�

ds2 = − 4�2�PA sin � + QA cos �� �11�

We multiply Eq. �11� by d� and integrate to obtain

�d�

ds
�2

= 8�2�PA cos � − QA sin � + K� �12�

where K is an integration constant. The sign of the curvature
d� /ds can be positive or negative, depending on the deformation
pattern. The slopes of the elastica at Points C and D are denoted
as � and �, respectively. We divide the domain of the elastica into
three segments as separated by Points C and D. In Segments I and

Fig. 1 A beam placed between the two clamps with specified
directions. End A of the beam is pushed in a distance along the
horizontal direction, while End B is fixed in space.

Fig. 2 The free body diagram of a small element ds

Fig. 3 Elastica deformation with two inflection points
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III, the curvature of the elastica is negative, while in Segment II,
the curvature is positive.

Segment I must satisfy the condition d� /ds=0 when �=�.
Therefore, for Segment I the integration constant K can be found
as

K = QA sin � − PA cos � �13�

As a consequence, Eq. �12� can be written as

�d�

ds
�

I

2

= 8�2�PA�cos � − cos �� − QA�sin � − sin ��� �14�

After taking square root, we have the curvature in Segment I,

�d�

ds
�

I
= − 2�2��PA�cos � − cos �� − QA�sin � − sin ���1/2

�15�

From Eq. �15�, the length of the elastica in Segment I can be
calculated as

lI = −�
0

�
d�

2�2��PA�cos � − cos �� − QA�sin � − sin ��
�16�

The x and y coordinates of Point C relative to A can be calculated
as

xC/A = −�
0

�
cos �d�

2�2��PA�cos � − cos �� − QA�sin � − sin ��

�17�

yC/A = −�
0

�
sin �d�

2�2��PA�cos � − cos �� − QA�sin � − sin ��

�18�
The situation in Segment III is similar to the one in Segment I.

The equation for curvature �d� /ds�III is the same as in Eq. �15�
except that � is replaced by �. The formulas for lIII, xB/D, and yB/D
are the same as in Eqs. �16�–�18�, except that � is replaced by �
in all the integrands, and the integration limits are changed to
from � to �B.

Segment II must satisfy the condition d� /ds=0 when �=� and
�. Therefore, the integration constant K can be found as

K = QA sin � − PA cos � = QA sin � − PA cos � �19�

As a consequence, QA and PA must satisfy the relation

QA = PA

cos � − cos �

sin � − sin �
�20�

The formulas for lII, xD/C, and yD/C are the same as in Eqs.
�16�–�18�, except that � is replaced by �, and the integration
limits are changed to from � to �.

We assume that the elastica is inextensible. As a consequence,
we have the relation

lI + lII + lIII = 1 �21�

The relative position between Ends B and A in the y direction is
fixed; therefore, we have

yB/D + yD/C + yC/A = yB/A =
1 − cos �B

�B
�22�

By specifying PA and �B, and using Eqs. �20�–�22�, we can solve
for the three unknowns QA, �, and �. The displacement �A of End
A in the horizontal direction can then be calculated from

�A =
sin �B

�B
− �xB/D + xD/C + xC/A� �23�

4 Load-Deflection Curve When �B=30 deg
Figure 4 shows the relation between the longitudinal force PA

and end movement �A for the case when �B=30 deg. This curve is
also called the load-deflection curve. The symbols �, �, and �
represent deformations without, with one, and with two inflection
points, respectively. The deformed configurations of the elastica at
various stages are also depicted. The two black dots on the dashed
horizontal line represent the starting point and the stop point of
End A. The elastica is originally in the circular arc shape when PA
is zero, which has no inflection point. The elastica deformation
experiences a transition from no inflection point to two inflection
points when �PA ,�A�= �0.25,0.006�, and experiences a transition
from two inflection points to one inflection point when �PA ,�A�
= �−0.39,1.19�. The load-deflection curve approaches a local
maximum S1 at �PA ,�A�= �1.04,0.58� and hits a local minimum S2
at �PA ,�A�= �−0.4,1.19�. It is noted that a negative PA means that
a pulling force is required to maintain equilibrium of the elastica.
The load-deflection curve between S1 and S2 has negative slope.

It is noted that the above static analysis does not say anything
about the stability of the equilibrium positions. Previous experi-
ence with shallow arches and shallow shells suggests that the
equilibrium positions corresponding to the load-deflection curve
with negative slope are unstable �9�. Therefore, the equilibrium
positions corresponding to the deflection curve with negative
slope cannot be realized in the laboratory. As a consequence, if we
follow the load-deflection curve by increasing the external push-
ing force PA to slightly beyond the local maximum S1, the elastica
will snap, as indicated by the arrows, to an equilibrium position
corresponding to a Point S3 on the load-deflection curve. This
conjecture will be examined by a dynamic analysis in the next
section.

5 Natural Frequencies and Stability Analysis
In this section, we study the natural frequencies and stability of

the elastica when it is pushed in by a distance �A. We first solve
for the static deformation of the elastica as described in Secs. 3
and 4, and denote the static solution as xe�s�, ye�s�, �e�s�, Me�s�,
Fxe�s�, and Fye�s�. We superpose the static solution with small
perturbation, for instance,

x�s,t� = xe�s� + xd�s�sin �t �24�

where � is a natural frequency. The other variables y�s , t�, ��s , t�,
M�s , t�, Fx�s , t�, and Fy�s , t� are treated in the same manner.

By substituting the above perturbed variables into Eqs. �2�–�4�
and �5��– �7�� and ignoring the higher order terms, we arrive at
the following linear equations for the six unknowns xd�s�, yd�s�,
�d�s�, Md�s�, Fxd�s�, and Fyd�s�:

Fig. 4 Load-deflection curve for �B=30 deg. The symbols �,
�, and � represent deformations without, with one, and with
two inflection points, respectively.
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�xd

�s
= − �d sin �e,

�yd

�s
= �d cos �e,

��d

�s
= 4�2Md �25�

�Md

�s
= �Fxe�d − Fyd�cos �e + �Fxd + Fye�d�sin �e �26�

�Fxd

�s
= −

1

4�2�2xd,
�Fyd

�s
= −

1

4�2�2yd �27�

The boundary conditions at s=1 are

xd�1� = yd�1� = �d�1� = 0 �28�

It is noted that while End A is subjected to a prescribed pushing
force PA, it is allowed to slide freely when the elastica vibrates. As
a consequence, the boundary conditions at s=0 are

Fxd�0� = yd�0� = �d�0� = 0 �29�

In other words, this is a load-control procedure. It is noted that �
in linear equations �25�–�27� only appears in the form of �2.
Therefore, if the characteristic value �2 is positive, it means that
the corresponding mode is stable with natural frequency �. On the
other hand, if �2 is negative, it means that the equilibrium posi-
tion is unstable. The Newton–Raphson method is used to solve for
the characteristic values �2. The details of the numerical proce-
dure can be found in Ref. �8�.

Figure 5 shows the first four natural frequencies as functions of
the end movement �A for the case when �B=30 deg. Two impor-
tant features should be noted here. First of all, we notice that the
lowest natural frequency �1 is 21 when �A=0. As �A increases to
0.58, �1 decreases to zero. Between �A=0.58 and 1.19, �1 is
purely imaginary, and the elastica is unstable. This range of �A
corresponds to the load-deflection curve between S1 and S2 in Fig.
4. This analysis validates the conjecture we made in Sec. 4 that
the load-deflection curve between S1 and S2 in Fig. 4 represents
the unstable equilibrium positions.

The second feature worthy of a closer look is that the frequency
loci in Fig. 5 appear to be crossing each other at locations G1
��A=0.92� and G2 ��A=1.27�. However, if we magnify the fre-
quency loci near the neighborhood of these two locations, the
frequency loci are actually veering away from each other. Figure 6
shows the magnification of the frequency loci near G1. In the
same figure, we also show the mode shapes corresponding to the
four natural frequencies in the neighborhood. The dotted lines
represent the equilibrium shapes. The solid lines represent the
mode shapes. The intersections of the dotted lines and the solid
lines are the nodal points of the mode shapes, as noted by the open
circles. It is noted that the two mode shapes on the top possess the
three nodal points. The left mode shape on the bottom possesses
two nodal points, while the one on the right possesses only one

nodal point. It is interesting to note that a similar frequency loci
veering phenomenon occurs in other totally different structures,
such as in rotating flexible disks �10�.

6 Experiments
Figure 7 shows a schematic diagram of the experimental setup

we use to examine the theoretical predictions. The elastica is made
of a stainless steel strip �AISI type 420� with Young’s modulus
200 GPa and a mass density of 7800 kg /m3. The length L of the
strip is 60 cm and the cross section is 60�0.3 mm2. One end of
the strip is fixed in an aluminum clamp, while the other aluminum
clamp on the other end is allowed to slide on a guide rail. The
angle between the fixed clamp and the sliding clamp is adjustable.
For the time being, we set the angle to be 30 deg. The sliding
clamp is attached by a cotton string. The string passes through a
pulley with a bucket attached to the other end. In the bucket, we
put in small steel screws as dead load. Each small screw weighs
11.2 g. The displacement of the sliding clamp can be recorded by
using a ruler. In order to measure the natural frequencies of the
elastica under fixed load, we point a photonic probe �MTI 2000�
normal to one point of the elastica. After hitting the elastica manu-
ally, we can obtain the natural frequencies of the system.

The cross marks ��� in Fig. 8 represent the measured load-
deflection relation. For convenient reference, we present the mea-
sured results with both dimensionless parameters �left and bottom
sides� and the physical ones �right and top sides�. The same label-
ing style is adopted in Fig. 9 as well. The solid line represents the
theoretical prediction, as shown in Fig. 4. We found that the mea-
sured deflections agree with the theoretical predictions reasonably
well.

The natural frequencies are obtained from a power spectrum
measurement by hitting the elastica at about one-third of the
length from the moving end �End A� and measuring the displace-
ment of the elastica at a location close to the fixed end �End B�.
Figure 9 shows the power spectrum when the elastica is free from

Fig. 5 The first four natural frequencies as functions of �A for
�B=30 deg

Fig. 6 Magnification of the frequency loci near location G1 in
Fig. 5. The mode shapes corresponding to the natural frequen-
cies are also shown.

Fig. 7 Schematic diagram of the experimental setup
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external pushing force. Four natural frequencies can be observed
within the range of 50 Hz. The lowest natural frequency is 3.4 Hz.
As �A increases, this lowest natural frequency approaches zero
quickly and is difficult to measure. In Fig. 10, we record the
variation of these four natural frequencies with cross marks ��� as
�A changes due to the external load. To compare these measured
natural frequencies with the theoretical predictions, we replot the
theoretical natural frequency loci from Fig. 5 as dashed lines. It is
found that the measured natural frequencies do not agree with the

theoretical curves from Fig. 5 very well. To account for this dis-
crepancy, we have to take into account the mass of the moving
clamp.

7 Effect of Clamp Mass on the Natural Frequencies
In Sec. 5, we calculate the natural frequencies of the elastica by

ignoring the mass of the sliding clamp. In the experiment, the
mass of the sliding clamp is 483 g. This mass is quite significant
compared to the mass of the elastica, 84 g. In order to take into
account the mass of the clamp, the boundary condition �with di-
mension� at the moving end must be modified as

Fx�0,t� = mc

�2x�0,t�
�t2 − PA �30�

where PA=−Fxe�0�. mc is the mass of the moving clamp. After
following the same linearization procedure as in Sec. 5, the di-
mensionless boundary condition on Fxd�0� in Eq. �29� can be re-
placed by

Fxd�0� = −
1

4�2mc�
2xd�0� �31�

After this modification, the predicted natural frequencies are plot-
ted as the solid lines in Fig. 10. Generally speaking, the clamp
mass lowers the natural frequencies. Besides, the clamp mass does
not affect the range in which �1 becomes imaginary. It is observed
that the agreement between the measured natural frequencies and
the theoretical prediction is improved by taking into account the
clamp mass. It is noted that after snapping, we are unable to
measure the lowest natural frequency because the friction force is
too large due to the large shear force from the clamp. This sticking
phenomenon from the friction force prevents the free movement
of the moving clamp, which is essential to the fundamental mode.
In this paper, we do not consider friction in our formulation.

8 Effects of �B

Having experimentally confirmed the theoretical predictions,
we are ready to investigate the effect of �B on the load-deflection
relations. Figure 11 shows the theoretical load-deflection curves
for various �B. In this figure, we identify the unstable equilibrium
positions with dashed lines. The load-deflection curve for �B
=0 deg is a special case and deserves more attention. For this
case, End A will not move until PA reaches the critical load PA
=1, at which the natural frequency �1 is zero. The first four natu-
ral frequencies as functions of �A are shown in Fig. 12. It is noted
that this elastica becomes unsable when �A reaches 1. It means
that Ends A and B coincide. However, it is impossible to produce
this equilibrium position in the laboratory without dismantling
Clamp A and reversing its direction �11�. Furthermore, before �A
reaches 1 the elastica will contact itself when �A=0.85. This self-
contact phenomenon prevents Clamp A from moving beyond �A
=0.85�11,12�. The deformation configurations corresponding to

Fig. 8 Experimental measurement of load-deflection curve

Fig. 9 Power spectrum when the elastica is free from external
pushing force

Fig. 10 The measured natural frequencies are recorded with
cross marks. The dashed and solid curves are the theoretical
predictions neglecting and including the clamp mass,
respectively.

Fig. 11 Load-deflection curves for various values of �B
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�A=0.85 and 1 are depicted in Figs. 13�a� and 13�b�. The load-
deflection curve for �B=0 deg in Fig. 11 is terminated with a cross
mark when self-contact occurs. To avoid self-contact, �B must be
greater than 18 deg. It is noted that for �B=120 deg, 150 deg, and
180 deg no snapping will occur.

For the load-deflection curves in Fig. 11 with local maximum
and local minimum, we denote the external force PA correspond-
ing to the local maximum as PA�cr�

+ and the local minimum as

PA�cr�
− . If Clamp A is pushed in from the original position, the

elastica will snap when PA reaches PA�cr�
+ . On the other hand, if we

trace the load-deflection curve in the opposite direction by reduc-
ing PA, then a reverse snapping may occur when PA reaches
PA�cr�

− . Figure 14 shows these two critical loads as functions of �B.

It is noted that snapping can occur only when �B is in the range
from 18 deg to 119 deg. The gap between PA�cr�

+ and PA�cr�
− de-

creases as �B increases.

9 Conclusions
In this paper, we study, both theoretically and experimentally,

the deformation and stability of a clamped-clamped planar elas-
tica, with one clamp fixed in space and the other allowed to slide
along a straight line when it is under a longitudinal pushing force.
Several conclusions can be summarized as follows.

�1� The deformation of the elastica can have zero, one, and two
inflection points, depending on the slope difference be-
tween the two ends and the magnitude of the external lon-
gitudinal force.

�2� When the pushing force reaches a critical value, snapping
may occur as the elastica jumps from one configuration to
another remotely away from the original one. The equilib-
rium configuration corresponding to a negative slope in the
load-deflection curve is unstable.

�3� Natural frequency loci veering phenomena are observed
when the natural frequencies of the elastica are plotted as
functions of the sliding clamp movement.

�4� The measured static load-deflection relation agrees with the
theoretical prediction very well. On the other hand, the
measured natural frequencies do not agree very well with
the theoretical prediction, unless the mass of the moving
clamp is taken into account.

References
�1� Timoshenko, S. P., 1935, “Buckling of Flat Curved Bars and Slightly Curved

Plates,” ASME J. Appl. Mech., 2, pp. 17–20.
�2� Hoff, N. J., and Bruce, V. G., 1954, “Dynamic Analysis of the Buckling of

Laterally Loaded Flat Arches,” J. Math. Phys. �Cambridge, Mass.�, 32, pp.
276–288.

�3� Budiansky, B., and Roth, R. S., 1962, “Axisymmetric Dynamic Buckling of
Clamped Shallow Spherical Caps,” Collected Papers on Instability of Shells
Structures, NASA Paper No. TND-1510, pp. 597–606.

�4� Simitses, G. J., 1990, Dynamic Stability of Suddenly Loaded Structures,
Springer-Verlag, New York.

�5� Kimball, C., and Tsai, L.-W., 2002, “Modeling of Flexural Beams Subjected to
Arbitrary End Loads,” ASME J. Mech. Des., 124, pp. 223–235.

�6� Venanzi, S., Giesen, P., and Parenti-Castelli, V., 2005, “A Novel Technique for
Position Analysis of Planar Compliant Mechanisms,” Mech. Mach. Theory,
40, pp. 1224–1239.

�7� Love, A. E., 1944, A Treatise on the Mathematical Theory of Elasticity, Dover,
New York.

�8� Lin, Y.-Z., 2007, Longitudinal Force Transmission and Vibration of a Planar
Elastica, Master thesis, Department of Mechanical Engineering, National Tai-
wan University.

�9� Simitses, G. J., 1976, An Introduction to the Elastic Stability of Structures,
Prentice-Hall, Englewood Cliffs, NJ.

�10� Chen, J.-S., and Bogy, D. B., 1992, “Mathematical Structure of Modal Inter-
actions in a Spinning Disk-Stationary Load System,” ASME J. Appl. Mech.,
59, pp. 390–397.

�11� Van der Heijden, G. H. M., Neukirch, S., Goss, V. G. A., and Thompson, J. M.
T., 2003, “Instability and Self-Contact Phenomena in the Writhing of Clamped
Rods,” Int. J. Mech. Sci., 45, pp. 161–196.

�12� Plaut, R. H., Taylor, R. P., and Dillard, D. A., 2004, “Postbuckling and Vibra-
tion of a Flexible Strip Clamped at its Ends to a Hinged Substrate,” Int. J.
Solids Struct., 41, pp. 859–870.

Fig. 12 The first four natural frequencies as functions of �A for
�B=0 deg

(a) (b)
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− as functions of �B
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A micromechanics approach for assessing the impact of an interfacial thermal resistance,
also known as the Kapitza resistance, on the effective thermal conductivity of carbon
nanotube-polymer nanocomposites is applied, which includes both the effects of the pres-
ence of the hollow region of the carbon nanotube (CNT) and the effects of the interac-
tions amongst the various orientations of CNTs in a random distribution. The interfacial
thermal resistance is a nanoscale effect introduced in the form of an interphase layer
between the CNT and the polymer matrix in a nanoscale composite cylinder representa-
tive volume element to account for the thermal resistance in the radial direction along the
length of the nanotube. The end effects of the interfacial thermal resistance are accounted
for in a similar manner through the use of an interphase layer between the polymer and
the CNT ends. Resulting micromechanics predictions for the effective thermal conductiv-
ity of polymer nanocomposites with randomly oriented CNTs, which incorporate input
from molecular dynamics for the interfacial thermal resistance, demonstrate the impor-
tance of including the hollow region in addition to the interfacial thermal resistance, and
compare well with experimental data. �DOI: 10.1115/1.2871265�
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1 Introduction
Carbon nanotubes �CNTs� have been proposed as nanoscale

inclusions capable of imparting multifunctionality to composites
in which they are a constituent. This is due to the reported high
stiffness ��1 TPa �1��, high strength ��150 GPa �2��, as well as
high thermal and electrical conductivities ��2000 W /m K �3� and
1000–200,000 S /cm �4�, respectively� of CNTs. Experimental
measurements of the electrical conductivity of polymers contain-
ing CNTs, or nanocomposites, have shown substantial increase
�seven or more orders of magnitude� in electrical conductivity at
very low volume fractions ��1 wt. % � of CNTs �5–10�. However,
measurements of the impact of CNTs on the thermal conductivity
of polymer nanocomposites have not found as significant of an
increase in the nanocomposite conductivity, a factor of 3 or less
relative to the neat polymer at 1 wt. % �11–15�. It was observed
further that theoretical estimates for the nanocomposite thermal
conductivity in the form of micromechanics modeling yielded pre-
dictions more than a factor of 10 larger than the measured values
�16,17�.

It has been proposed that despite the high thermal conductivity
of nanotubes, it is a nanoscale effect at the interface between the
nanotube and the polymer that governs the composite thermal
conductivity �18,19� due to the presence of an interface thermal
resistance often referred to as the Kapitza resistance. However, at
present, it is difficult to directly measure the interfacial thermal
resistance between the nanotube and the polymer. As an alterna-
tive, molecular dynamics simulations have been used to estimate
the interfacial thermal resistance of CNTs embedded in a polymer
�19,20�. Based on temperature decay times on the order of tens of

picoseconds, such efforts have yielded estimates for the interfacial
thermal resistance on the order of 10−8 m2 K /W.

Using molecular dynamics estimates of the interfacial thermal
resistance as a starting point, effective medium approaches
�EMAs� �21� have been used in parametric studies to theoretically
assess the potential impact of the interfacial thermal resistance on
the effective nanocomposite thermal conductivity
�12,16,20,22–24�. These models consider the nanotubes as straight
isotropic solid circular cylinders, and subsequently define a
Kapitza radius based on an estimate of the Kapitza resistance,
which is used to scale the conductivity of the nanotubes resulting
in anisotropic effective circular solid cylinders for the microme-
chanics modeling. These anisotropic circular cylinders are then
taken as randomly oriented and well dispersed in the matrix ma-
terial. By varying the nanotube aspect ratio �L /d, where L and d
are the CNT length and diameter, respectively�, initial nanotube
conductivity, and the Kapitza resistance values, these models can
obtain good agreement with a given set of measured data. For
example, using a Kapitza resistance obtained from molecular dy-
namics �MD� simulations �19� of 8�10−8 m2 K /W, Nan et al.
�16� applied the EMA and varied the nanotube diameter for a
fixed aspect ratio of 2000, obtaining good agreement with the data
from Choi et al. �25� with a CNT diameter of 15 nm �and there-
fore length of 30 �m�. In contrast, Bryning et al. �12� applied
EMA and varied the Kapitza resistance, obtained good agreement
with their measured data using a Kapitza resistance of 2.6
�10−8 m2 K /W and nanotube diameter and length of 1.1 nm and
167 nm, respectively, or an aspect ratio of 150.

In an alternative approach, Chen et al. �17� introduced the in-
terfacial thermal resistance in the form of a jump factor �26� in
conjunction with a Mori–Tanaka �27–29� micromechanics averag-
ing method, which also considered the CNTs to be randomly ori-
ented, well-dispersed isotropic solid circular cylinders. There it
was observed that the interfacial thermal resistance had little im-
pact on the effective thermal conductivity of the nanocomposite as
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the jump factor only accounted for the thermal resistance along
the lateral surface of the nanotubes. Instead, it was argued that the
thermal transport across the tube ends played a larger role, which
was demonstrated through the introduction of anisotropy in the
nanotube conductivity by taking the axial conductivity of the
nanotube as an average of the isotropic nanotube and matrix con-
ductivities.

In the present work, a micromechanics approach based on the
composite cylinder model �30,31� is applied as an alternate ap-
proach for assessing the impact of an interfacial thermal resistance
on the effective thermal conductivity of nanocomposites. The
present model considers the nanotubes as isotropic, hollow circu-
lar cylinders well dispersed in the matrix, but uses a different
approach for considering the effects of random orientation. This
approach applies the Mori–Tanaka method in a consistent manner,
which accounts for the interactions amongst the various nanotube
orientations. In addition, the generalized self-consistent composite
cylinder method is used for the nanoscale representative volume
element �RVE� as it allows for the introduction of interphase lay-
ers in a manner which enforces concentric heat flux through each
layer, and accounts for the hollow interior of the nanotube. As
such, the effects of the interfacial thermal resistance are accounted
for through the incorporation of an interphase layer in the com-
posite cylinder assemblage, which is of sufficiently small, but fi-
nite thickness, and which has a thermal conductivity determined
based on the Kapitza resistance value in accordance with MD
simulations �19,20�. The end effects of the Kapitza resistance are
accounted for in a similar manner through the use of an interphase
layer between the polymer and the CNT ends using a simple series
model, the effective conductivity of which is used to introduce
anisotropy into the CNTs by altering the axial conductivity of the
CNT annulus.

The micromechanics model is described in detail in the subse-
quent section, where in addition the influence of the hollow region
of the CNT and interactions between CNTs is discussed, and re-
sults for effective thermal conductivity in the absence of the
Kapitza resistance are put into context with current experimental
data in the literature. In Sec. 3, the details of including both the
lateral and end effects of the Kapitza resistance are provided, with
results for the effective thermal conductivity of polymer nano-
composites provided in Sec. 4 where they are discussed in com-
parison to other micromechanics models for polymer nanocom-
posites in the literature as well as in comparison with measured
data also available in the literature.

2 Micromechanics Model
For modeling purposes, the CNT-polymer nanocomposite is

idealized, as shown in Fig. 1. The macroscale boundary value

problem of engineering interest is shown there to depend on mi-
crostructure consisting of randomly oriented, straight, high aspect
ratio, interphase coated CNTs. For a given set of boundary condi-
tions at the macroscale, the temperature T, for example, can be
determined for the steady-state heat conduction case from the fol-
lowing equation:

� · q = 0 �1�

where the heat flux q is assumed to obey Fourier’s law of heat
conduction given by

q = − keff � T �2�

In Eq. �2� above, keff is the effective thermal conductivity for the
nanocomposite determined from the microscale RVE, with input
from the nanoscale RVE. As such, the boundary conditions on the
microscale RVE are homogeneous, and correspond to the average
thermal gradient in the macroscale boundary value problem.

2.1 Microscale RVE. The key assumption for the microscale
RVE is that the CNTs are well dispersed and randomly oriented in
a matrix material. The effective thermal conductivity for the mi-
croscale RVE is determined by treating each orientation of a given
CNT as a separate material phase, and consistently averaging over
all possible orientations �see, for example, Refs. �32–34��. As
such, the nanocomposite effective thermal conductivity can be
expressed as

k�eff� = k�M� +
1

4�
�

0

2��
0

�

�cf�k�f� − k�M��A�f��sin���d�d� �3�

where cf is the total volume fraction of CNTs, including all inter-
phase layers; � and � are angles identifying a given CNT orien-
tation; k�M� is the matrix conductivity tensor; k�f� is the CNT
conductivity tensor, including all interphase layers; and A�f� is the
thermal gradient concentration tensor, which accounts for interac-
tions among the various orientations of CNTs.

In order to account for the hollow nature of the CNTs and for
the presence of interphase regions, the thermal conductivity is
determined from the nanoscale RVE consisting of a composite
cylinder assemblage, as depicted in Fig. 1. As such, the CNT
conductivity �k�f�� in Eq. �3� is obtained using the generalized
self-consistent composite cylinder method �31�. As all of the
CNTs are assumed to be identical, the generalized self-consistent
composite cylinder method need only be applied to a single com-
posite cylinder assemblage at an arbitrary orientation �with local
coordinate system ỹi�, and then expressed in the global microscale
RVE coordinate system �yi� by a change of basis, i.e.,

kij
�CCA� = Qimk̃mn

�CCA�Qjn �4�

where the tilde denotes quantities in the local composite cylinder
assemblage coordinate system and the components of the rotation
matrix �Q� are given in terms of the direction cosines for the 2-1-3
Euler angles �with the angle for the 1-rotation specified to be
zero�2 by

�Q� = 	 cos���sin��� sin���sin��� cos���
− sin��� cos��� 0

− cos���cos��� − sin���cos��� sin���

 �5�

While Eq. �3� is valid for a variety of micromechanics approxi-
mations �e.g., the Mori–Tanaka, self-consistent, and generalized
self-consistent methods�, for the Mori–Tanaka method �27–29�,
the specific form of the thermal gradient concentration tensor is
given by

2In Ref. �33�, the rotation matrix corresponds to a 3-1-3 set of Euler angles with
the 1-rotation specified to be � /2, and is an equivalent change of basis, but different
parametrization.

Fig. 1 Schematic representation of CNT-polymer nanocom-
posite consisting randomly oriented high aspect ratio compos-
ite cylinder assemblages
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Aij
�f� = QimT̃mn

�MT�Qln��1 − cf�Ijl +
cf

4�

��
0

2��
0

�

�QlrT̃rs
�MT�Qjs�sin���d�d��−1

�6�

where T̃ij
�MT� is given by

T̃ij
�MT� = �� ji + Sjm�knm

�M��−1�k̃ni
�CCA� − kni

�M���−1 �7�

In Eq. �7� above, �ij is the Kronecker delta and Sij is the thermal
equivalent of the Eshelby tensor. The details of the generalized

self-consistent composite cylinder method for determining k̃ij
�CCA�

are discussed in the subsequent section. The use of Eq. �6� with
the composite cylinder method for the nanoscale RVE results in a
what is termed a two-step process. However, it is noted that,
through the use of the composite cylinder method, one can define
concentration tensors for each layer in accordance with the gen-
eralized self-consistent, the self-consistent, or even the Mori–
Tanaka method. Such an approach was not employed here in order
to isolate the effects of interactions amongst the various orienta-
tions of CNTs from the effects of the hollow region, as will be
discussed in Sec. 2.3.

2.2 Nanoscale RVE. The generalized self-consistent compos-
ite cylinder method consists of the application of a set of homo-
geneous boundary conditions relating the nanoscale RVE to the
microscale RVE. An energy equivalency is established between
the generalized self-consistent composite cylinder assemblage
shown in Fig. 1 and a homogeneous effective medium �31�. In
accordance with a given homogeneous boundary condition, an
admissible temperature field is assumed for each layer of the gen-
eralized self-consistent composite cylinder assemblage. The ad-
missible temperature fields satisfy both the boundary conditions
and the steady-state thermal energy equation expressed in the lo-
cal assemblage coordinate system �ỹi� by

� · q̃ = 0 �8�

Defining the intensity in terms of the temperature T̃ as

H̃ = − �T̃ �9�

and applying Fourier’s law

q̃ = k̃H̃ �10�

Eq. �8� can be expressed in cylindrical coordinates for spatially
homogeneous, transversely isotropic materials as

k̃22
�2T̃

�r2 + k̃22
 1

r2

�2T̃

��2 +
1

r

�T̃

�r
� + k̃11

�2T̃

�z2 = 0 �11�

which has admissible solutions

T̃ = D1z + D2 �12a�

T̃ = 
D1r +
1

r
D2�cos��� �12b�

where D1 and D2 are constants. The two admissible solutions
correspond to uniform heat flow in the axial and transverse direc-
tions, respectively, and are applied in all layers of the generalized
self-consistent composite cylinder assemblage. For example, if the
innermost layer �the CNT� is identified as layer one, and the ma-
trix layer identified as layer N, then the temperature fields in each
layer can be expressed as

T̃�i� = D1
�i�z + D2

�i� for ri−1 � r � ri �13a�

T̃�i� = 
D1
�i�r + D2

�i�1

r
�cos��� for ri−1 � r � ri �13b�

where i ranges from 1 to N+1, the effective material layer. The
constants in Eq. �13a� are determined from the application of the
homogeneous boundary conditions corresponding to axial heat
flow given by

T̃�i�
z = −
L

2
� = T̃0 �14a�

T̃�i�
z =
L

2
� = T̃0 + 	T̃ �14b�

while the constants in Eq. �13b� are determined from the homo-
geneous boundary conditions corresponding to transverse heat
flow and insulated internal surface given by

T̃�N��r = rN,�� = H̃0rN cos��� �15a�

q̃r
�1��r = r0,�� = 0 �15b�

and the continuity of temperature and heat flux conditions across
an ideal interface given by

T̃�j��r = rj,�� = T̃�j+1��r = rj,�� �16a�

q̃r
�j��r = rj,�� = q̃r

�j+1��r = rj,�� �16b�

where j ranges from 1 to N.
Following the approach of Hashin �30�, we define “energy”

integrals over the total volume of the assemblage, which require
the same energy transfer by the same thermal gradient as

W =
1

V�
V

1

2
�q̃ · H̃�dV �17�

and equating the energy integral for the total composite cylinder
assemblage to that of an effective homogeneous material, expres-
sions for the effective axial and transverse conductivities for the
total composite cylinder assemblage are obtained as

k̃11
�total� = �

i=1

N

k̃11
�i� �ri

2 − ri−1
2 �

rN
2 �18a�

Fig. 2 Initial comparison of micromechanics modeling ap-
proaches with the measured data from Choi et al. †25‡, Bryning
et al. †12‡, and Guthy et al. †13‡
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k̃22
�total� =

1

rN
2 H0

2�
i=1

N

k22
�i���D1

�i��2�ri
2 − ri−1

2 � − �D2
�i��2
 1

ri
2 −

1

ri−1
2 ��

�18b�

where it is noted that the radius of the Nth layer is given in terms
of the volume fraction of the innermost layer in the assemblage as
rN=r1 /�v f. The conductivities obtained from Eqs. �18a� and �18b�
correspond to the effective properties for aligned CNTs of a single
type at a given volume fraction. However, as we are interested in
randomly oriented CNTs, we identify the critical volume fraction
as v̂ f =r1

2 /rN−1
2 , which corresponds to the volume fraction at which

there is not longer a matrix phase enveloping the composite cyl-
inder assemblage so that the effective properties obtained are for
the CNT plus the interphase region�s�. As such, the axial compo-
nent for the conductivity of the composite cylinder assemblage in
Eqs. �3� and �6� is obtained as

k̃11
�CCA� = �k̃11

�total��vf=v̂ f
�19�

and the transverse components from

k̃22
�CCA� = �k̃22

�total��vf=v̂ f
�20�

If there are no interphase regions, the values obtained correspond
to the effective properties of the CNT, having accounted for its
hollow nature.

It is noted that, in order to be consistent with the average fields
at the microscale RVE, the boundary conditions on the nanoscale
RVE should account for the interactions amongst the various ori-
entations. However, in considering linear materials, it is observed
that the effective properties obtained from the generalized self-
consistent composite cylinder are independent of the boundary
conditions applied. This means that the generalized self-consistent
composite cylinder method, in which the effective material layer
of the composite cylinder assemblage is taken to extend to infinity
and to account for interactions amongst the various CNTs, is
equivalent to the composite cylinder method in which the bound-
ary conditions are applied directly to the Nth layer of the compos-
ite cylinder assemblage, as the bounds for both methods are equal
and coincident.

2.3 Micromechanics Modeling Results. Initial microme-
chanics predictions for the effective thermal conductivity of CNT-
polymer nanocomposites, which do not include the effects of the
Kapitza resistance, are provided in Fig. 2. Three micromechanics
models are presented, all of which make use the Mori–Tanaka
method �27–29� in considering random orientation, i.e., all meth-
ods make use of the Eshelby solution �35� for an ellipsoid in an
infinite matrix subject to a homogeneous displacement, which is
dependent on the average macroscale thermal gradient and a per-
turbation thermal gradient in approximating the thermal gradient
concentration tensor in Eq. �3�. The differences lie first in how
interactions are accounted for, which is dependent on the defini-
tions of the average and perturbation thermal gradients applied in
the Eshelby solution, and second on the inhomogeneity consid-

ered in the Eshelby solution.
The first model considers the CNTs to be randomly oriented,

solid, isotropic cylinders and does not consider the interactions
amongst the various orientations of CNTs in applying the Mori–
Tanaka consistency condition, i.e., in solving for the perturbation
thermal gradient. Instead, the effective properties for an aligned
CNT are averaged over all orientations as described for effective
elastic properties in Ref. �36�. As such, the Mori–Tanaka consis-
tency condition is applied for the aligned case, so that Eq. �6� is
instead expressed as

Ãij
�f� = T̃ik

�MT���1 − cf�Ijk + cfT̃jk
�MT��−1 �21�

and the effective nanocomposite properties obtained as

k�eff� =
1

4�
�

0

2��
0

�

�Qk̃alignedQT�sin���d�d� �22�

where

k̃aligned = k̃�M� + cf�k̃�f� − k̃�M��Ã�f� �23�

This model is equivalent to the Maxwell–Garnett EMA �MG-
EMA� used by Nan et al. �16� and to the Mori–Tanaka method
used by Chen et al. �17� in the absence of the Kapitza resistance.3

The second model also considers the CNTs to be randomly
oriented, solid, isotropic cylinders, but does consider the interac-
tions amongst the various orientations in applying the Mori–
Tanaka consistency condition, as described for effective elastic
properties in Refs. �32–34�, resulting in the additional integration
over all orientations contained in the global concentration tensor
of Eq. �6�. From Fig. 2, it is observed that whether or not the
interactions between the various orientations are considered in a
consistent manner or not has little impact on the effective proper-
ties predicted. This is consistent with what has similarly been
noted for the effective elastic properties or randomly oriented fi-
bers using both methods, and is likely to be the case for all com-
posites containing only linear materials.

The third micromechanics model provided in Fig. 2 considers
the CNTs to be randomly oriented, hollow cylinders, with the
annulus of material having the same isotropic properties as in the
previous two models �see Table 1�. The model proceeds in a two-
step approach using the generalized self-consistent composite cyl-
inder method to account for the hollow region of the CNT before
using the Mori–Tanaka method �with consistent orientation inter-
actions� to account for random orientation distribution as de-
scribed above �with N=2�. In contrast to the previous two models,
the effective CNT used in the Mori–Tanaka method is therefore

3Upon closer inspection of the theory behind the MG-EMA �see, for example,
Ref. �37��, it is found that the MG-EMA and Mori–Tanaka methods are rooted in the
same philosophy of using single inclusions embedded in an infinite matrix material
subject to a perturbation in the thermal gradient to obtain effective thermal conduc-
tivities and that both methods account for random orientations of inclusions in ex-
actly the same manner. For aspect ratios of 200 or greater, it can be shown that the
geometrical factors in Ref. �37� are equal to the Eshelby tensor components of the
Mori–Tanaka method for circular cylinders.

Table 1 Input data for the three micromechanics models for randomly oriented CNTs in an
epoxy matrix, the resulting effective conductivities of which are provided in Fig. 2. All conduc-
tivities are in W/m K, and all dimensions are in nanometers. Values for the CNT conductivity are
taken from Ref. †3‡ and are within the range of values reported in Ref. †12‡. Epoxy matrix
conductivity is reflective of the value from Ref. †13‡. The thickness of 0.34 nm for the hollow
case is a commonly accepted value †38–41‡ consistent with the interlayer spacing of graphite.

k̃�CNT� rCNT tCNT k̃11
�f� k̃22

�f� k̃�M�

No interactions, solid 2000 0.85 N/A 2000 2000 0.16725
With interactions, solid 2000 0.85 N/A 2000 2000 0.16725
With interactions, hollow 2000 0.85 0.51 1267 32 0.16725
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transversely isotropic due to the influence of the hollow region.
From Fig. 2, it is observed that even for CNTs with a small radius
�the value here corresponds to a �10,10� CNT�, the effect of the
hollow region on the effective thermal conductivity of the nano-
composite is significant, resulting in decreases in conductivities of
14%, 37%, and 45% at volume fractions of 0.0001, 0.001, and 0.1
CNTs, respectively.

It is noted that, while the Mori–Tanaka method has been used
here to account for the random orientation distribution, similar
approaches can be taken to consistently apply the self-consistent
�42� and generalized self-consistent micromechanics methods.
However, in these methods, the consistency comes from the ap-
plication of homogeneous boundary conditions reflective of the
average thermal gradient in the macroscale RVE as applied to the
effective material, which envelopes the inhomogeneity, and as
such, result in a nonlinear set of equations. However, as the
bounds are coincident for linear materials, this extra complexity is
not expected to be largely different from the thermal conductivi-
ties obtained from the Mori–Tanaka method, particularly for the
generalized self-consistent case. As such, the Mori–Tanaka
method is considered sufficiently accurate and is for its ease of
implementation.

It is also of interest to note that included in Fig. 2 is a collection
of measured data from the literature for CNTs dispersed in differ-
ent matrix materials, including polymethylmethacrylate �PMMA�
and epoxy, i.e., non-cross-linked and cross-linked polymers
�12,13,25�. Of particular note is the measured data for the thermal
conductivity of a suspension of CNTs in a synthetic poly�
-olefin�
oil obtained by Choi et al. �25�. These data have been used by
both Nan et al. �16� and Chen et al. �17� to demonstrate that
micromechanics methods overpredict experimental measure-
ments, which continues to be the case even with accounting for
the hollow region as in the present model. Nan et al. �18,16� and
others have attributed the difference between measured values and
the predicted values of micromechanics models as the result of an
interface thermal resistance layer known as the Kapitza resistance.
In order to include the Kapitza resistance in the MG-EMA, Nan et
al. �16� used the rule of mixtures to first define an effective CNT
with transversely isotropic properties due to the Kapitza resis-
tance, and then used the MG-EMA to determine the effective
properties of the nanocomposite. The transversely isotropic prop-
erties of the effective CNT are obtained by using the Kapitza
resistance RK to define a Kapitza radius ak, which is then used
with the CNT length and diameter to scale the CNT conductivity

in defining effective axial �k̃11
�f�= k̃11

�RoM�� and transverse �k̃22
�f�

= k̃22
�RoM�� conductivities, respectively. In contrast, Chen et al. �17�

retained the solid, isotropic CNT and introduced the Kapitza re-
sistance in the form of a jump factor �26� using a flux condition
based on the Kapitza conductivity ��=1 /RK� �see Eq. �1� of Ref.
�17��. In the present work, the Kapitza conductivity is used with a
total heat flow condition to define the conductivity of a thin inter-
phase layer in the construction of an N=3 total composite cylinder
assemblage consisting of the hollow CNT, the Kapitza interphase
layer, and the matrix. The details of how the conductivity of the
Kapitza interphase layer are determined are provided in the sub-
sequent section.

3 Accounting for Interface Thermal Resistance
In accounting for the interface thermal resistance using the

composite cylinder model, the effects of the resistance layer
�Kapitza resistance� on radial heat flow are accounted for sepa-
rately from the end effects of the thermal resistance.

3.1 Accounting for Interface Thermal Resistance: Radial
Effects. An N=3 total composite cylinder assemblage consisting

of the CNT �r1=rCNT, k̃�1�= k̃�CNT�, tCNT�, the Kapitza interphase

layer �r2=rCNT+ tKap, k̃�2�= k̃�Kap��, and the matrix �k̃�3�= k̃�M�� is
used to introduce the Kapitza resistance into the micromechanics

model as a thin interphase region enveloping the nanotube. The
conductivity of the interphase region is taken to be isotropic with
the value of the conductivity determined from the energy balance
condition that

�Q̃�CNT��r=rCNT
=�� ���T̃�CNT��r=rCNT

− �T̃�M��r=rKap
�rCNTd�dz

= �Q̃�M��r=rKap
�24�

where the T̃�i� are from Eq. �13b� and where the total heat fluxes

Q̃�i� are given by

�Q̃�i��r=ri
=�� �q̃r

�i��r=ri
rid�dz �25�

The parameter � is the inverse of the Kapitza resistance �i.e., the
Kapitza conductivity� and is analogous to a convection constant. It
is used to determine the conductivity of the thin interphase layer
representing the Kapitza resistance. From the continuity condi-
tions in Eqs. �16a� and �16b� applied at rCNT and rKap, Eq. �24�
can be written as

�Q̃�Kap��r=rCNT
= �Q̃�Kap��r=rKap

=�� ���T̃�Kap��r=rCNT
− �T̃�Kap��r=rKap

�rCNTd�dz

�26�

allowing the conductivity of the interphase layer representing the
Kapitza resistance to be given by

k̃�Kap� =

��D1
�Kap��rCNT − rKap� + D2

�Kap�
 1

rCNT
−

1

rKap
��


D1
�Kap� −

1

rCNT
2 D2

�Kap�� �27�

where the constants D1
�Kap� and D2

�Kap� are determined from the
application of the boundary and continuity conditions in Eqs.
�15a�, �15b�, �16a�, and �16b� to the composite cylinder assem-
blage. The resulting simplified expression for the Kapitza layer
conductivity is then given as

k̃�Kap� =
�k̃�CNT�tCNTtKap�1

�2tKap
2 � + �3tCNTk̃�CNT�

�28�

where

�1 = �tCNT − 2rCNT��2rCNT + tKap�

�2 = 2rCNT
2 − 2rCNTtCNT + tCNT

2

�3 = �2tCNT − 4rCNT��tKap + rCNT� �29�

As only of the Q̃�i� conditions in Eq. �26� is needed to determine
the conductivity of the Kapitza layer, the other is used to evaluate
the error associated with a chosen thickness of the Kapitza layer.
In the results that follow, the thickness of the interphase region is
set to a value less than 1% the radius of the nanotube, e.g., tKap
=0.005rCNT, which results in an evaluated error of one one-
thousandth of a percent.

However, it is noted that accounting for the Kapitza resistance
in this way will only introduce the effects of the Kapitza resis-
tance on the effective transverse conductivity of the CNT. In the
approach employed by Chen et al. �17�, they observed that the
method they used to account for the thermal resistance effect did
not have a significant impact on the predicted effective thermal
conductivities. Instead, using different mean values of the nano-
tube and matrix conductivities to replace the axial conductivity of
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the nanotube, they have argued that the tube end transport plays a
larger role. As such, a simple model is used to effectively account
for the interface thermal resistance end effects.

3.2 Accounting for Interface Thermal Resistance: End
Effects. As a result of modeling the CNTs with high aspect ratio
composite cylinder assemblages, the transfer of heat from the ends
of the nanotube to the polymer matrix is ignored. As such, incor-
porating the lateral interface thermal resistance as a thin inter-
phase region does not reflect the inclusion of the interface thermal
resistance at the nanotube ends. A simple model for including
such effects is instead applied in which the nanotube axial con-
ductivity, k11

�1�=k11
�CCA�=k�CNT�, is replaced by an effective value,

k11
�1�=k

11

�*�
, determined from a simple series model shown in Fig. 3.

Looking at a � cross section of the nanotube �see Fig. 3�, the
lengthwise ends of the nanotube are replaced by regions with
conductivity equal to that determined for the Kapitza layer inter-
phase and with the same thickness as the Kapitza layer. Applying
the general solution for the axial heat flow potential �Eq. �12a��
for each phase in this column, we obtain

T̃�2a� = D1
�2a�z + D2

�2a� for −
L

2
� z � −

L

2
+ tKap �30a�

T̃�1� = D1
�1�z + D2

�1� for −
L

2
+ tKap � z �

L

2
− tKap �30b�

T̃�2b� = D1
�2b�z + D2

�2b� for
L

2
− tKap � z �

L

2
�30c�

where tKap is the thickness of the Kapitza interphase layer and L is
the length of the nanotube. The constants D1

�i� and D2
�i� are deter-

mined from the boundary and matching conditions given by

�T̃�2a��z=−L/2 = T̂1 �31a�

�T̃�2b��z=�L/2� = T̂2 �31b�

�T̃�2a��z=−�L/2�+tKap
= �T̃�1��z=−�L/2�+tKap

�31c�

�q̃z
�2a��z=−�L/2�+tKap

= �q̃z
�1��z=−�L/2�+tKap

�31d�

�T̃�2b��z=�L/2�−tKap
= �T̃�1��z=�L/2�−tKap

�31e�

�q̃z
�2b��z=�L/2�−tKap

= �q̃z
�1��z=�L/2�−tKap

�31f�

The cross section is then taken as equivalent to a homogeneous
cross section with axial conductivity k

11
* and with axial heat flow

potential given by

T̃�*� = D
1

�*�
z + D

2

�*�
for −

L

2
� z �

L

2
�32�

where the constants D
1

�*�
and D

2

�*�
are determined through appli-

cation of the boundary conditions identical to those applied in
Eqs. �31a� and �31b�. Equating the thermal energies, an expres-
sion for the effective axial conductivity of the nanotube is ob-
tained as

k
11

�*�
=

2k�Kap��D1
�2a��2tKap + k�CNT��D1

�1��2�L − 2tKap�

�D
1

�*��2L
�33�

where k�Kap� is the conductivity of the interface thermal resistance
interphase layer determined from Eq. �27� and k�CNT� is the origi-
nal isotropic nanotube conductivity in which the nanotube retains
in the transverse direction, i.e., k22

�1�=k�CNT�. Substituting the val-
ues for the constants into Eq. �33�, the expression for the effective
axial conductivity of the nanotube can be expressed as

k
11

�*�
=

k�CNT�k�Kap�L

k�CNT�2tKap + k�Kap��L − 2tKap�
�34�

It is of interest to note from Eq. �34� that as k�Kap� goes to zero,
k

11

�*�
goes to zero indicative of the Kapitza layer being a perfect

insulator. If k�Kap� goes to infinity, then k
11

�*�
=k�CNT�L / �L−2tKap�,

which means that for small thicknesses, k
11

�*�
approaches k�CNT�

returning the perfect interface assumption.

4 Results and Discussion
MD simulations have been used by many to quantify Kapitza

resistance/conductance values for CNTs in a variety of matrix
materials using transient heat flow analysis. Huxtable et al. �19�
obtained a value of 12.5 MW /m2 K for the Kapitza conductance
of a �5,5� single walled CNT �SWCNT� in an octane liquid. This
value has been used by Nan et al. �16� and others in EMA micro-
mechanics models, which include thermal resistance effects in
predicting effective thermal conductivities. Focusing on function-
alized CNTs in poly�ethylene vinyl acetate�, Clancy and Gates
�20� also used MD simulations to study the effects grafting den-
sity of functional groups on the Kapitza resistance. There it was
noted that functionalization could reduce the Kapitza resistance
from the pristine value of �9.5�10−8 m2 K /W �i.e., a conduc-
tance comparable to the value in Ref. �19�� to a value of �2
�10−8 m2 K /W for a �6,6� SWCNT.

Micromechanics estimates for the effective thermal conductiv-
ity of CNT-polymer nanocomposites using values for the Kapitza
resistance obtained by MD simulations �19� for both the EMA
model and the two-step composite cylinders/Mori–Tanaka model
described herein are provided in Fig. 4. Micromechanics predic-
tions using the Kapitza conductance jump factor were noted by
Chen et al. �17� to demonstrate negligible difference relative to
initial micromechanics estimates �i.e., no Kapitza resistance�, and
are in effect represented by the no Kapitza EMA results also in-
cluded in the figure. However, for the two-step CCM/MT and
EMA models, the effects of including the Kapitza resistance are
observed to quite significant, with decreases in thermal conductiv-
ity from no Kapitza cases of 20%, 71%, and 99% at volume
fractions of 0.0001, 0.001, and 0.1 CNTs, respectively, for the
two-step composite cylinders method/Mori–Tanaka �CCM/MT�
results. Also, from Fig. 4, the percent differences between the
two-step CCM/MT model and EMA are observed to be 0.06%,
0.6%, and 28% at volume fractions of 0.0001, 0.001, and 0.1
CNTs, respectively.

This reduction in the difference between the two model predic-
tions is noted to be the result of the competing influences of the
interface thermal resistance and the hollow region of the CNT. For
example, for a CNT radius of 0.85 nm �as used in Fig. 4 corre-
sponding to a �10,10� SWCNT�, the surface area to volume ratio

Fig. 3 Schematic representation of how the Kapitza layer con-
ductivity is used to introduce anisotropy into the nanotube
conductivity
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of the CNT is 1.17 nm−1 and the volume fraction of the hollow
region within the CNT is 0.36. However, for a CNT radius of
5 nm �as used in Ref. �16� corresponding to a �74,74� SWCNT�,
the surface area to volume ratio of the CNT is reduced to 0.2 nm−1

while the volume fraction of the hollow region within the CNT is
increased to 0.86, resulting in percent differences between the
two-step CCM/MT model and EMA of 2%, 16%, and 84% at
volume fractions of 0.0001, 0.001, and 0.1 CNTs, respectively. As
illustrated in Fig. 5, the rule of mixtures approach utilized by Nan
et al. �16� to account for Kapitza resistance neglects the effects of
the hollow region, which becomes increasingly significant at
larger radii, and therefore makes rule of mixtures estimates in-
creasingly less accurate.

The same is true in the axial direction, which for the rule of
mixtures approach can be represented by changing the dCNT in
Fig. 5�a� to LCNT, while the composite cylinder model considers
the effect of the hollow region in addition to the end effects of the
Kapitza resistance when determining the effective conductivity of
CNT, as shown schematically in Fig. 3.

It is also of interest to note from Fig. 4 that the two-step
CCM/MT model predictions using the Kapitza resistance value
from the MD simulations of Huxtable et al. �19� compare well
with the measured data obtained by Bryning et al. �12� for surfac-
tant dispersed SWCNTs in epoxy EPON 828. While the MD
simulations of Huxtable et al. are for a different matrix material
�D2O or heavy water�, both the MD simulations and the measured
data from Bryning et al. are for surfactant dispersed SWCNTs.

Further, the measured value for the mean radius of CNTs reported
by Bryning et al. is comparable to the radius of the CNT used in
the MD simulation and the radius used in the present model. In
contrast, Nan et al. �16� used this same MD value for the Kapitza
resistance and a radius of 5 nm in obtaining EMA results, which
compared favorably with measured data from Choi et al. �25�.
However, as previously mentioned, these results neglected the sig-
nificant effect of the hollow region, and when corrected for this
using the two-step CCM/MT model, the results underpredict the
data of Choi et al. by 200% at a volume fraction of 0.01 CNTs. If
instead the radius of 0.85 nm is used in the EMA model, the
resulting thermal conductivities �as shown in Fig. 4� are only
slightly larger than those predicted using the two-step CCM/MT
method. As such, despite not including the influence of the hollow
region of the CNT, Bryning et al. were able to obtain an equally
good comparison with their measured surfactant dispersed CNT
data using EMA by treating the Kapitza resistance as a free pa-
rameter and using a much lower aspect ratio �below the aspect
ratio of 200, above which the ellipsoid is equivalent to a fiber�.
However, the two-step CCM/MT model presented herein not only
compares favorably with measured date but does so using Kapitza
resistance values obtained from MD simulations while retaining
both the influence of the hollow region and the high CNT aspect
ratio �a value of 588 corresponding to an �1 �m long CNT4�.

Additional MD simulations performed by Clancy and Gates
�20� have studied the effects of functionalization on the Kapitza
conductance for a SWCNT dispersed in poly�ethylene vinyl ac-
etate� �EVA� polymer. For the unfunctionalized CNT, a value for
Kapitza conductance of 10 MW /m2 K was obtained for the CNT-
EVA interface. While this value is on the same order as the value
obtained by Huxtable et al. �19� of 12.5 MW /m2 K for the CNT-
surfactant interface in D2O, it implies that there can be a differ-
ence in Kapitza conductance between different matrix materials.
Further, Clancy and Gates obtained values for the Kapitza con-
ductance, which increased with increasing functional group graft-
ing density �increasing faster for longer functional groups�, start-
ing from the unfunctionalized value of 10 MW /m2 K and
increasing to values even larger than 200 MW /m2 K. While at
present the authors are unaware of measured data for thermal
conductivity for CNT-EVA nanocomposites corresponding to the
Clancy and Gates system, the variations in Kapitza conductance
which they obtained can be used to motivate a parametric study
on Kapitza conductance. Such a parametric study is provided in
Fig. 6 for a range of Kapitza conductivity values between
10 MW /m2 K and 300 MW /m2 K.

In addition to the aforementioned good agreement between the
effective thermal conductivities obtained from the two-step
CCM/MT model using a Kapitza conductance of 12.5 MW /m2 K
and the measured data of Bryning et al. for surfactant dispersed
CNTs, it is observed that Kapitza conductance values of
40 MW /m2 K and 90 MW /m2 K yield effective thermal conduc-
tivities, which compare favorably with the measured data of
Guthy et al. for dimethylformamide �DMF� dispersed SWCNTs in
PMMA �13� and of Bryning et al. �12� for DMF dispersed
SWCNTs in epoxy, respectively. Unlike with the surfactant case,
the DMF is not expected to be at the CNT interface in the final
prepared nanocomposite �13�, and as such, these two sets of data
represent interfaces between CNTs and different materials, and
thus, may have different Kapitza resistances, reflecting the vary-
ing degree of phonon scattering at the nanotube-matrix interface.
However, in order to further assess the micromechanics model,
MD simulations for SWCNTs in these matrix materials are
needed.

Table 2 provides a summary of the influence of the Kapitza
resistance on the effective CNT properties for a range of � values.

4Nan et al. use a 5 nm radius and aspect ratio of 2000 corresponding to a 20 �m
long CNT.

Fig. 4 Comparison of two-step CCM/MT effective thermal con-
ductivities that include the effects of the interface thermal re-
sistance with EMA effective thermal conductivities and with
measured data from Choi et al. †25‡, Bryning et al. †12‡, and
Guthy et al. †13‡ for values of the Kapitza conductivity param-
eter � obtained from MD studies †19‡

Fig. 5 Schematic representation of the difference between the
rule of mixtures approach employed by Nan et al. †16‡ to ac-
count for the Kaptiza resistance and the composite cylinder
model approach applied herein
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It is observed that, over a four order of magnitude range of the
Kapitza conductance, the axial and transverse conductivities of
the effective CNT increase from values which are a factor of
0.003 of their respective no Kapitza values obtained using �
=12.5 MW /m2 K to nearly equal to their no Kapitza values when
�=10 GW /m2 K. Over this same range, the conductivity of the
Kapitza layer k�Kap� also increases by four orders of magnitude
from a value of 53 �W /m K to 0.4 W /m K, while the value of
the effective axial conductivity of the CNT annulus, k

11

�*�
, increases

by three orders of magnitude to nearly return the CNT input value
of 2000 W /m K. In order to further illustrate the importance of
including the hollow region of the CNT, effective CNT conduc-
tivities as obtained by the rule of mixtures approach employed by
Nan et al. �16� are also included. Both the composite cylinder
model and the rule of mixtures model use equivalent values for
k�Kap� and k

11

�*�
. Here, it is observed that the largest difference

between the two methods is seen in the effective axial CNT con-

ductivity �k̃11
�CCA� versus k̃11

�RoM��.
Also included in Fig. 6 are two-step CCM/MT micromechanics

estimates for the effective thermal conductivity of multiwalled
CNTs �MWCNTs� intended for comparison with the measured
data of Choi et al. �25�. In order to be consistent with the high
resolution scanning electron microscopy �SEM� results reported

by Choi et al., the CNT radius used in these micromechanics
estimates was set to 12.5 nm, the CNT length was set to 50 �m
�resulting in an aspect ratio of 2000�, and the thickness of the
CNT was set to 10.2 nm to be consistent with the reported 30
walls of MWCNT, each wall having a thickness of 0.34 nm. Us-
ing a value of the Kapitza conductivity of 12.5 MW /m2 K from
the MD simulations of Huxtable et al. �19� �as used by Nan et al.
�16�� was observed to overestimate the measured data by as much
as 160% at a volume fraction of 0.01 MWCNT. Instead, in order
to obtain relatively good agreement with the MWCNT-oil data of
Choi et al., a Kapitza conductance of 3 MW /m2 K �within a range
of MD values reported for EVA by Clancy and Gates �20�� is used.
From the point of view of surface to volume ratio �which for
MWCNT is 93% smaller than for SWCNTs� and of hollow region
volume fraction �which for 30 layers in a 12.5 nm radius
MWCNT is 0.03�, it is clear why such a low Kapitza conductance
yields effective thermal conductivities that are much larger than
for the SWCNT cases. However, it is again noted that in order to
further assess the micromechanics predictions, additional MD
simulations are required to quantify the Kapitza conductance at
both a CNT-synthetic poly�
-olefin� oil interface and at a CNT-
CNT interface.

5 Conclusions
A micromechanics model for CNT-polymer nanocomposites,

which accounts for interactions amongst the various orientations
of CNTs in a random distribution, and includes the effects of both
the hollow region of the CNT and of the Kapitza conductance, has
been developed. It has been shown that accounting for interactions
amongst the various orientations in a consistent manner does not
yield large differences from methods that average aligned proper-
ties over all orientations. In contrast, accounting for the hollow
region of the CNT has been shown to have a significant impact on
the effective thermal conductivities predicted, especially for
SWCNTs with large radii. Furthermore, it has been shown that
including the effects of the Kapitza conductance, as obtained from
MD simulations for surfactant treated SWCNTs, in micromechan-
ics predictions yields effective properties that compare well with
measured data for surfactant dispersed SWCNTs. Values for the
Kapitza conductance for a variety of nonsurfactant dispersed
SWCNTs and for MWCNTs have been estimated through micro-
mechanics parametric studies and await validation from additional
MD simulations.

Fig. 6 Parametric study on the influence of the Kapitza resis-
tance using the two-step CCM/MT effective thermal conductivi-
ties in comparison with measured data from Choi et al. †25‡,
Bryning et al. †12‡, and Guthy et al. †13‡ for a range of values of
the Kapitza conductivity parameter � obtained from MD studies
†19,20‡

Table 2 Values for the Kapitza conductivity „�=1/RK… and the effective CNT axial and trans-
verse conductivities obtained from the composite cylinder method „Eqs. „19… and „20…… for N
=3, where the second layer is the Kapitza interphase layer. Also included are the corresponding
Kapitza interphase layer conductivity „k„Kap… given by Eq. „27…… and effective axial conductivity
of the CNT annulus „k

11
„*… given by Eq. „34…… used in the parametric study on the influence of the

Kapitza conductivity on the effective nanocomposite conductivities. Also provided are the ef-
fective CNT axial and transverse conductivities obtained from the rule of mixtures approach
„Eq. „3… of Ref. †16‡…. Units for the Kapitza conductance are in W/m2 K, while conductivities are
reported in W/m K.

�

Effective CNT
from CCM

Effective CNT
from RoM

Kapitza layer
effects

k̃11
�CCA� k̃22

�CCA� k̃11
�RoM� k̃22

�RoM� k�Kap� k
11

�*�

1.25E+07 3.90E+00 1.15E−02 6.23E+00 1.06E−02 5.30E−05 6.22E+00
4.00E+07 1.24E+01 3.48E−02 1.98E+01 3.40E−02 1.70E−04 1.98E+01
9.00E+07 2.75E+01 7.72E−02 4.40E+01 7.65E−02 3.82E−04 4.39E+01
2.80E+08 8.19E+01 2.37E−01 1.31E+02 2.38E−01 1.19E−03 1.31E+02
1.00E+11 1.21E+03 2.33E+01 1.92E+03 8.15E+01 4.24E−01 1.92E+03

 1267.202 32.146 2000 2000 N/A N/A
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Analytical Solutions for the Modeled k
Equation
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The semitheoretical function of Nezu and Nakagawa (1993, Tur-
bulence in Open-Channel Flows, A. A. Balkema, ed., Rotterdam,
The Netherlands) for the turbulent kinetic energy k is valid only
where local equilibrium is a good approximation. From an esti-
mation of the difference between the energy production and its
dissipation G��, we present in this study an analytical solution
for the modeled k equation. Comparisons with direct numerical
simulation data of turbulent channel flows show good agreement.
A universal function for k� is deducted for y��20.
�DOI: 10.1115/1.2912722�

1 Introduction
The development of theoretical and semitheoretical analytical

methods for turbulent flows is of great importance in both practi-
cal engineering applications and basic turbulence research.

For steady open-channel flows in local equilibrium, where the
energy production G is balanced by the dissipation �, Nezu and
Nakagawa �1� suggested an analytical solution for the modeled k
equation, based on an approximation that allows to write the eddy
viscosity �t as 1 /k. Even if this approximation is not completely
realistic, their solution, which is represented by a function that
exponentially decreases with y the distance from the bed, is valid
far from the bed, where local equilibrium seems to be a good
approximation. However, it is not adapted in the near-bed region.
In the immediate vicinity of a wall, from expanding the fluctuat-
ing velocity components in Taylor series about the normal dis-
tance y from the wall, Hanjalić and Launder �2� obtained an equa-
tion where the turbulent kinetic energy k is proportional to square
of y. However, this quadratic variation of k is valid only in the
viscous sublayer.

In this study, we will first improve the demonstartion of Nezu
and Nakagawa for the equilibrium solution for k by a more rigor-
ous approximation for �t. Based on our demonstration, with an
estimation of G−�, we will present a more general solution for the
modeled k equation, which improves the description of k in the
near-wall region. This near-wall solution will be validated and
calibrated by direct numerical simulation �DNS� data of turbulent
channel flows.

2 Analytical Solution for Local Equilibrium
We write the modeled k-equation as �1�

�k

�t
= G +

�

�y
��t

�k

�y
� − � �1�

where G is the energy production, � the dissipation, and �t the
eddy viscosity. For steady open-channel flows, Eq. �1� becomes

�

�y
��t

�k

�y
� = − �G − �� �2�

In local equilibrium, where the energy production is balanced
by the dissipation �G=��, it is possible to write Eq. �2� as

�t
dk

d�
= const � − 2C1 �3�

where �=y /h and h is the scale of the flow �can represent either
the turbulent flow depth or the boundary layer thickness�.

2.1 Nezu and Nakagawa’s Demonstration. Nezu and Naka-
gawa �1� wrote an approximation for the eddy viscosity �t as

�t �
k2

�
�

l

k
� k

u�
�3

� �u�
2

k
��u�h� �

1

k
, �t = C�t

�
1

k
�4�

where l is a turbulent length scale, u� the friction velocity, u� the
root-mean-square of turbulent velocity fluctuations, and C�t

� a con-
stant. Inserting Eq. �4� into Eq. �3� and by integrating, they ob-
tained �1�

k

u�
2 = D1e�−2C1��� �5�

where D1 is a coefficient, and C1�=C1 /C�t
� . Equation �5� can be

expressed as

	k = 	k0e�−C1���−�0�� �6�

where k0=k�y0�, �0=y0 /h is the relative roughness �y0 is the hy-

drodynamic roughness�, and D1= �k0e2C1��0� /u�
2.

2.2 Proposed Demonstration. The approximation �t�1 /k
seems not completely realistic. If we assume a shape given by a
dimensionless function f��� as

k

u�
2 = D1f2��� �7�

and

u�

u�

= Duf��� �8�

a more rigorous approximation for �t is �3�

�t �
k2

�
�

l

k
� k

u�
�3

�
l���

k
u�

3f���3 �
g

k
�9�

where

g��� = l���u�
3f���3 �10�

With g, Eq. �9� is dimensionally valid and with a dimensionless
constant C�t

, we write �t as
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Fig. 1 Turbulent kinetic energy. �, DNS data †4‡ for Re�=642;
curve, Eq. „17… with A1

+=360 and D1=4.2.
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�t = C�t

g

k
�11�

From Eqs. �4� and �11�, we have C�t
� =C�t

g. Inserting Eq. �11� into
Eq. �3�, we obtain

g���
k

dk

d�
= − 2Cn �12�

where Cn=C1 /C�t
. Equation �12� can be expressed as

�g���
	k

�d	k

d�
= − Cn �13�

By integrating Eq. �13� between �0 and �, we obtain �3�

	k = 	k0 exp
− Cn�
�0

�
d�

g���� �14�

From this equation, we find Eq. �6� only in the case where

g = const �15�

since C1�=C1 /C�t
� =C1 / �C�t

.g�=Cn /g. Condition �15� allows
therefore to obtain for steady open-channel flows in local equilib-
rium an analytical solution for the modeled k equation.

We can notice finally that in Nezu and Nakagawa’s demonstra-
tion

g � u�
3h = const �16�

2.3 Interest and Limits of the Equilibrium Analytical
Solution. We write Eq. �5� in wall units as

k+ = D1e�−y+/A1
+� �17�

where y+=u�y /� is the dimensionless wall distance �where u� is
the wall friction velocity and � the kinematic viscosity�, k+

=k /u�
2, and A1

+= �hu�� / �2C1���. Figure 1 presents a comparison be-
tween the analytical solution �17� and DNS of turbulent channel
flow of Iwamoto et al. �4� for Re�=642 �hereafter, Re� denotes the
friction Reynolds number defined based on u�, �, and the channel
half-width ��. With D1=4.2 and A1

+=360, this solution represents
well the DNS data. However, the solution �17� is not appropriated
near the wall. In fact, for y+�20, k+ decreases to 0 and Eq. �17� is
not able to represent this decrease.

The solution �17� is therefore valid only where local equilib-
rium is a good approximation. In order to provide a more accurate
solution, we need an estimation of the difference between G and
�. We will first suggest an approximation for G−� and then we
will present a more general solution. This solution will allow to
improve the k profile in the near-wall region.

3 Proposed Analytical Solution for k

3.1 Approximation for G−�. From measurements of
Sukhodolov et al. �5� �Fig. 2�a��, we notice that the approximation
Gh /u�

3=CG / �y /h�2 �where CG is a dimensionless constant�, which
can be expressed as follows:

G = CG

u�
3h

y2 �18�

represents well, with CG=1 �dashed line�, the experimental data
�5�. An appropriate fit for G �Fig. 2�a�� gives CG=0.6 �solid line�.
Equation �16� shows that Eq. �18� is in the form of G�g /y2.

We notice from these experimental data �5� �Fig. 2� that � has a
shape similar to G, we write therefore

Fig. 2 Dimensionless turbulence generation and dissipation
rate versus dimensionless distance. „a… Turbulence generation.
�, measurements †5‡ „Profile 3…. Curves, approximation „18…;
dashed line, with CG=1; solid line, with CG=0.6. „b… Turbulence
dissipation rate. �, measurements †5‡ „Profile 3…. Curves, ap-
proximation „19…; dashed line, with C�=1; solid line, with C�

=0.5.

Fig. 3 Turbulent kinetic energy. �, DNS data †4‡ for Re�=642;
curves, proposed analytical solution „26… with C=1, A+=8 and
B=0.14 for y+Ï20.
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� = C�

u�
3h

y2 �19�

where C� is a constant. As for G, this equation is in the form �
�g /y2. With C�=1 �dashed line�, Eq. �19� represents the shape of
experimental data �5�. An appropriate fit for � �Fig. 2�b�� gives
C�=0.5 �solid line�.

This shape for G and � is confirmed by wind tunnel experi-
ments of Krogstad and Antonia �6� over rough walls �mesh sur-
face and rod surface�.

From Eqs. �18�, �19�, and �16�, we are able to write G-�
�g /y2. Therefore, G−� can be approximated by

G − � = Cd
g

y2 �20�

where Cd is a dimensionless coefficient. With Eqs. �11� and �20�,
we write Eq. �2� as

d

d�
�C�t

g

k

dk

d�
� = − Cd

g

�2 �21�

Fig. 4 Turbulent kinetic energy for y+Ï20. �, DNS data of Iwamoto et al. †4‡; �, DNS data of Kim †7‡; curves, proposed
analytical solution „27…. „a… Re�=642; curve, A+=8 and B=0.14; „b… Re�=395; curve, A+=8 and B=0.132; „c… Re�=298;
curve, A+=8 and B=0.127; „d… Re�=150; A+=8 and B=0.116; „e… Re�=109; A+=8 and B=0.11.

Journal of Applied Mechanics JULY 2008, Vol. 75 / 044501-3

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



The assumption d��tdk /dy� /dy�1 /y2 of Eq. �21�, which is
valid for rough beds, seems to be valid even for smooth walls,
since even if G decreases very close to a wall, the term of mo-
lecular viscosity in the k equation increases there.

3.2 Proposed Analytical Solution. We are able to integrate
Eq. �21�, and therefore to find an analytical solution, only in the
case where g=const. We will assume, like for the first solution in
local equilibrium, that g=const.

By integrating Eq. �21� with the assumption of condition �15�,
we obtain

g

k

dk

d�
=

Cd

C�t

g�1

�
+ const� �22�

We write Eq. �22� as

1
	k

d	k

d�
= �C

�
− C2� �23�

where C=Cd /2C�t
and C2=−constC. By integrating Eq. �23�, we

obtain

k

k0
= � �

�0
�2C

e�−2C2��−�0�� �24�

which can be expressed as

k

u�
2 = D� y

y0
�2C

e�−y/A� �25�

where D= �k0e2C2�0� /u�
2 and A=h / �2C2�. As for the first solution

in local equilibrium, the condition �15� allows to obtain an ana-
lytical solution for the modeled k equation.

With the dimensionless wall distance y+=u�y /� �wall unit�, we
write Eq. �25� as

k+ = B�y+�2Ce�−y+/A+� �26�

where A+=Au� /�, k+=k /u�
2, B=D / �y0

+�2C, and y0
+=y0u� /�.

We notice that we find Eq. �17� from our solution �26� for C
=0. This confirms that Eq. �17� is a particular case of our solution
�26�, when G=�. Indeed, coefficient C is related to Cd and there-
fore to G−�.

3.3 Interest and Calibration of the Proposed Solution in
the Near-Wall Region. The proposed analytical solution �26� is
examined by DNS data of Iwamoto et al. �4�. Figure 3 shows that
our analytical solution with C=1, A+=8, and B=0.14 reproduces
well the DNS data �4� for y+	20. The coefficient C seems there-
fore to be equal to 1 in the near-wall region, where we write k+ as

k+ = By+2e�−y+/A+� �27�
In order to verify the universality of this function �27�, we

validate the proposed equation with other DNS data. Figure 4
presents a comparison between our proposed solution �27� and
DNS data of Iwamoto et al. �4� for different values of Re�. Figure
4�b� shows also a comparison with DNS data of Kim �7� for
Re�=395. These figures confirm the ability of this equation to
represent k+, with C=1 and A+=8. However, B seems to depend

on Re�.
We notice that the series expansion of the exponential at the

first order in Eq. �27� gives k+=By+2− �B /A+�y+3. This is similar
to the equation obtained from expanding the fluctuating velocity
components in Taylor series �2� �p. 608� which is valid only in the
immediate vicinity of a wall ��y��5�.

Table 1 gives some values of B for different Re� obtained from
DNS data.

We propose a function �28� for the coefficient B as

B�Re�� = CB1 Re�
CB2 �28�

where CB1 and CB2 are constants. The calibration �Fig. 5� gives
CB1=0.0588 and CB2=0.1346.

4 Conclusion
In summary, we proposed a more realistic demonstration of the

equilibrium solution �17� for k and we presented its interest and
limits. Based on our demonstration, with an estimation of G−�,
we suggested a more general solution �26� for k, which allows to
find Eq. �17� for C=0 �when G=�� and gives Eq. �27� for C=1 in
the near-wall region. This near-wall solution �27� was calibrated
by DNS data �A+=8 and B is given by Eq. �28��. The matching
procedure between the two solutions �17� and �27� will allow to
provide a link between the coefficients D1 of Eq. �17� and B of
Eq. �27� and therefore to write D1�Re��. Finally, our main assump-
tions, which concern the approximation d��tdk /dy� /dy�1 /y2 and
the condition g=const, need to be investigated.
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Table 1 Coefficient B for different Re�

Re� 109 150 298 395 642
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Fig. 5 Dependency of the coefficient B on the Reynolds num-
ber Re�. �, values obtained from DNS data †4‡; curve, proposed
function „28….

044501-4 / Vol. 75, JULY 2008 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.43. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Stationary Response of MDOF
Dissipated Hamiltonian Systems to
Poisson White Noises

Y. Wu

W. Q. Zhu1

e-mail: wqzhu@yahoo.com

Department of Mechanics,
State Key Laboratory of Fluid Power Transmission
and Control,
Zhejiang University,
Hangzhou 310027, P.R.C.

The stationary response of multi-degree-of-freedom dissipated
Hamiltonian systems to random pulse trains is studied. The ran-
dom pulse trains are modeled as Poisson white noises. The ap-
proximate stationary probability density function and mean-
square value for the response of MDOF dissipated Hamiltonian
systems to Poisson white noises are obtained by solving the
fourth-order generalized Fokker–Planck–Kolmogorov equation
using perturbation approach. As examples, two nonlinear stiffness
coupled oscillators under external and parametric Poisson white
noise excitations, respectively, are investigated. The validity of the
proposed approach is confirmed by using the results obtained
from Monte Carlo simulation. It is shown that the non-Gaussian
behavior depends on the product of the mean arrival rate of the
impulses and the relaxation time of the oscillator.
�DOI: 10.1115/1.2912987�

1 Introduction
While Gaussian random processes provide efficient models of

various environmental actions, for a broader class of random ex-
citations, such as random pulse trains, the assumption of Gaussi-
anity is not justified by the experimental evidence. So, there has
been sustained interest in the response of nonlinear dynamical
systems to non-Gaussian random excitations in the past two de-
cades. Very important contributions to such a problem are due to
Roberts �1�, who considered a Poisson impulse process and pro-
posed a perturbation solution to solve the generalized Fokker–
Planck–Kolmogorov �FPK� equation. An improved perturbation
scheme was devised by Cai and Lin to obtain an approximate
stationary probability density function �PDF� of the response of a
nonlinear oscillator to Poisson white noises �2�. The Itô differen-
tial rule was extended by Di Paola and Falsone to the case of
external and parametric non-Gaussian delta-correlated excitation
including Poisson white noise �3�. Linear system excited by poly-
nomials of filtered Poisson pulses was studied by Di Paola �4�. A
new approach was proposed by Di Paola and Pirrotta to transform
the FPK equation for the original system driven by external input
into that governing the PDF of the new state variable �5�.

Although significant progress has been made in this area, to the
present authors’ knowledge, all known techniques to date are ap-
plicable only to the single-degree-of-freedom �SDOF� systems
�6–9�. Much more efforts are needed to solve higher dimensional
generalized FPK equations.

In the present paper, the approximate stationary PDF and mean-
square value for the response of multi-degree-of-freedom
�MDOF� dissipated Hamiltonian systems to Poisson white noises
are obtained by using the perturbation approach. Two specific
nonlinearly coupled oscillators under external and parametric
Poisson white noise excitations, respectively, are investigated. The
numerical results are compared to those obtained from Monte
Carlo simulations, and some useful conclusions are made.

2 Poisson White Noise
One versatile model for random pulse train is Poisson white

noise

��t� = �
k=1

N�t�

Yk��t − tk� �1�

where ��·� is the Dirac delta function and N�t� denotes a Poisson
counting process giving the number of pulses that arrive in the
time interval �0, t�; �Yk ,k�1� is a collection of real-valued iden-
tically distributed independent random variables; Yk represents the
random magnitude of the impulse, which is independent of the
pulse arrival time tk.

The Poisson white noise ��t� can be considered as the formal
derivative of a homogeneous compound Poisson process defined
as

C�t� = �
k=1

N�t�

YkU�t − tk� �2�

where U�t� being the unit step function. The increments dC�t�
=C�t+dt�−C�t� hold the following relationship �3� �neglecting in-
finitesimals of higher order than dt�:

E��dC�t��r� = �E�Yr�dt �3�

where E�·� denotes the mathematical expectation and ��0 is the
mean arrival rate of the Poisson counting process N�t�. For the
limiting case when � approaches infinity and, at the same time,
the intensity �E�Y2� keeps a constant value, the Poisson white
noise ��t� tends to a Gaussian one �3�. For the present study, we
confine ourselves to a restricted class of problems for which � and
�E�Y2� are constants.

3 Generalized FPK Equation
Consider a MDOF dissipated Hamiltonian system excited by

Poisson white noise. The equations of motion of the system are of
the form �10�

Q̇i =
�H

�Pi
�4a�

Ṗi = −
�H

�Qi
− cij�Q,P�

�H

�Pj
+ f ik�Q,P��k�t� �4b�

�i, j = 1,2, . . . ,n; k = 1,2, . . . ,��

where Qi and Pi are the generalized displacements and momenta,
respectively. H=H�Q ,P� is a Hamiltonian with continuous
infinite-order partial derivatives. Equations �4a� and �4b� can be
converted into the following Itô stochastic differential equations
�5,10�:

dQi =
�H

�Pi
dt �5a�
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dPi = �−
�H

�Qi
− cij�Q,P�

�H

�Pj
+

�

m!
E�Yk1

Yk2
¯ Ykm

�Sk1k2¯km

�m� 	dt

+ f ik�Q,P�dCk�t� �5b�

�i, j = 1,2, . . . ,n; m = 2, . . . ,�; k,k1,k2, . . . ,

km = 1,2, . . . ,��

where � /m!E�Yk1
Yk2

¯Ykm
�Sk1k2¯km

�m� are known as the Wong–

Zakai–Di Paola–Falsone �WZDF� correction terms, and Sk1k2¯km

�m�

may be recursively evaluated as follows:

Sk1k2¯km

�m� =
�Sk1k2¯km−1

�m−1�

�Pj
f jkm

�Q,P�, Sk1

�1� = f ik1
�Q,P� �6�

The WZDF correction terms disappear if the functions f ij de-
pend on Q only, and then the stationary PDF p�q ,p� is governed
by the following reduced generalized FPK equation �2,5�:

−
�

�qi
� �H

�pi
p	 −

�

�pi

�−

�H

�qi
− cij

�H

�pj
	p�

+
1

2
�mn�E�YmYn�f imf jn

�2p

�pi�pj

−
1

3!
�mn�mp�E�YmYnYp�f imf jnfkp

�3p

�pi�pj�pk

+
1

4!
�mn�mp�mq�E�YmYnYpYq�f imf jnfkpf lq

�4p

�pi�pj�pk�pl

− ¯ = 0 �i, j,k,l = 1,2, . . . ,n; m,n,p,q = 1,2, . . . ,��
�7�

where �ij is the Kronecker delta.

4 Perturbation Approach
We now employ a perturbation approach to extract a hierarchy

of partial differential equations for p�q ,p�, from Eq. �7�. In view
of the fact that the excitation process tends to a Gaussian process
as �→�, we select �= �	 /��1/2 as a dimensionless perturbation
parameter. Since the intensity �E�Y2� must be finite, it can be
inferred that 	E�Y2��O��2�, 	3/2E�Y3��O��3�, 	2E�Y4��O��4�,
etc. Let

�nIn = 	n/2�E�Yn+2� �8�

The solution of Eq. �7� can be written in the following form:

p�q,p� = p0�q,p��1 + �Q1�q,p� + �2Q2�q,p� + . . . � �9�

On substituting Eqs. �8� and �9� into Eq. �7� and grouping terms of
the same power of �, the following set of second-order partial
differential equations is obtained.

In �0,

−
�

�qi
� �H

�pi
p0	 +

�

�pi

� �H

�qi
+ cij

�H

�pj
	p0� +

I0

2
�mnfimf jn

�2p0

�pi�pj
= 0

�10�

In �1,

−
�H

�pi

�Q1

�qi
+ � �H

�qi
+ cij

�H

�pj
+ 2I0�mnf jn

�f im

�pj
+

I0

p0
�mnfimf jn

�p0

�pj
	 �Q1

�pi

+
I0

2
�mnfimf jn

�2Q1

�pi�pj
=

I1

3!	1/2p0
�mn�mpfimf jnfkp

�3p0

�pi�pj�pk

�11�

In �2,

−
�H

�pi

�Q2

�qi
+ � �H

�qi
+ cij

�H

�pj
+ 2I0�mnf jn

�f im

�pj
+

I0

p0
�mnfimf jn

�p0

�pj
	 �Q2

�pi

+
I0

2
�mnfimf jn

�2Q2

�pi�pj

=
I1

3!	1/2p0
�mn�mpfimf jnfkp

�3p1

�pi�pj�pk

−
I2

4!	p0
�mn�mp�mqfimf jnfkpf lq

�4p0

�pi�pj�pk�pl

]

�i, j,k,l = 1,2, . . . ,n; m,n,p,q = 1,2, . . . ,�� �12�

Equation �10� is well known as a usual FPK equation for Gaussian
white noise excitation, which is exactly solvable if it belongs to
the class of generalized stationary potential �11�. The functional
form of the solution depends on the integrability and resonance of
the associated Hamiltonian system �10�.

The solution to Eq. �10� p0�q ,p� enables Eq. �11� to be formu-
lated. Attempts to solve Eq. �11� generally for arbitrary H and f ij
have proved to be extremely difficult. However, in most of the
practical cases, H is a polynomial of qi and pi. If f ij is a constant
or a linear function of qi, then replace the nonlinear coefficient of
�Q1 /�pi by the linear form Aiqi+Bipi; we can obtain the approxi-
mate solution in polynomial form. The following equivalence cri-
terion, minimization of the mean-square error, is considered

E�
2� = minimum �13�

where


 = Aiqi + Bipi − � �H

�qi
+ cij

�H

�pj
+ 2I0�mnf jn

�f im

�pj
+

I0

p0
�mnfimf jn

�p0

�pj
	

�14�

The linearization coefficients are

Ai = E
qi� �H

�qi
+ cij

�H

�pj
+

3I0

2
f jn

�f im

�pj
+

I0

p0
�mnfimf jn

�p0

�pj
	��E�qi

2��−1

�15a�

Bi = E
pi� �H

�qi
+ cij

�H

�pj
+

3I0

2
f jn

�f im

�pj
+

I0

p0
�mnfimf jn

�p0

�pj
	��E�pi

2��−1

�15b�
The left-hand side of Eq. �12� is exactly the same as that of Eq.

�11�; therefore, it can be approximately solved in the same man-
ner.

To estimate the optimal Ai and Bi values, one may apply the
perturbation procedure iteratively outlined above. The initial esti-
mates for Ai and Bi may impose upon p0�q ,p�, the exact solution
to Eq. �10�. Then p�q ,p� given in Eq. �9� is used for further
calculation for the improved Ai, Bi, etc. The iterative process con-
tinues until it converges.

It is well known that the non-Gaussian probabilistic character-
ization of the stationary response is verified to be depending
mainly on two coefficients, namely, the skewness and kurtosis,
which are associated with Q1 and Q2, respectively �12�. For the
case in which the random amplitude Yi is symmetrically distrib-
uted, then I1=0 and Eq. �11� gives rise to a trivial solution Q1
=0, and so does the skewness coefficient. Hence, the second-order
term �2Q2 becomes the leading correction term for non-
Gaussianity, and kurtosis becomes the most significant character-
istic depart from normal distribution.
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5 Example

5.1 Example 1. To illustrate the foregoing general procedure,
consider two linearly and nonlinearly stiffness coupled Duffing
oscillators subject to external Poisson white noise. The equation
of motion of the system is of the form

Ẍ1 + 2	1Ẋ1 + k1X1 + aX2 + b�X1 − X2�3 = �1�t� �16a�

Ẍ2 + 2	2Ẋ2 + k2X2 + aX1 + b�X2 − X1�3 = �2�t� �16b�

where �1�t� and �2�t� are the two independent Poisson white
noises. Equations �16a� and �16b� can be formulated as the fol-
lowing stochastically excited and dissipated Hamiltonian system
�10�:

Q̇1 =
�H

�P1
, Ṗ1 = −

�H

�Q1
− 2	1

�H

�P1
+ �1�t� �17a�

Q̇2 =
�H

�P2
, Ṗ2 = −

�H

�Q2
− 2	2

�H

�P2
+ �2�t� �17b�

where the associated Hamiltonian is the total energy

H�q1,q2,p1,p2� =
p1

2

2
+

p2
2

2
+

1

2
k1q1

2 +
1

2
k2q2

2 + aq1q2 +
b

4
�q1 − q2�4

�18�

which is nonintegrable for a ,b�0. It further assumed that 	1
=	2=	, and the random pulse amplitude Y is symmetrically dis-
tributed, then I1=0, Q1=0; only second-order correction term
�2Q2 needs to be taken into consideration. Following the afore-
mentioned perturbation procedure, the following approximate
PDF for the system stationary response is found:

p�q,p� = p0�q,p��1 + �2Q2�q,p��

= C1 exp
−
4	

I0
� p1

2

2
+

p2
2

2
+

1

2
k1q1

2 +
1

2
k2q2

2 + aq1q2

+
b

4
�q1 − q2�4	�
1 +

	2

3�I0
2
− 18I0�p1

2 + p2
2�

+ 8�Ap1
3q1 + Bp2

3q2� + 12�p1
4 + p2

4�	

+
A

A + 3	2 �9A2q1
4	 − 3p1�p1

3 + 6I0q1�	 + 2Aq1�− 4p1
3

− 9I0q1 + 9p1
2q1	�� +

B

B + 3	2 �9B2q2
4	 − 3p2�p2

3 + 6I0q2�	

+ 2Bq2�− 4p2
3 − 9I0q2 + 9p2

2q2	���� �19�

where the linearization coefficients A and B are obtained by solv-
ing Eqs. �15a� and �15b�.

For illustrative purpose, the system parameters 	=0.04, k1=1,
k2=1.5, a=1 were assigned, and the numerical results were ob-
tained. The random pulse amplitude is assumed to be Gaussian
distributed with zero mean and the intensity of the Poisson white
noise is chosen as I0=0.03. Figures 1 and 2 show the stationary
probability densities of the generalized displacements q1 and q2
obtained by integrating Eq. �19�. Two different intensities of sys-
tem nonlinearity, b=0.1 and 1, are considered.

It is no doubt that the response of the system depends on the
mean arrival rate of impulses. However, the inherent characteristic
of the system should also be taken into account. Cai and Lin
suggested that a suitable measure for the closeness to a Gaussian
excitation is the product of � and the relaxation time tr of the
system, i.e., �=�tr �2�. It is convenient to assume, for simplicity,
that the relaxation time of the system is near to that of the corre-
sponding linear system �b=0�, for which tr=1 /	=25. Four differ-
ent cases corresponding to �=5, 7.5, 10, and 25, as well as the
case of Gaussian white noise excitation, are plotted in Figs. 1 and
2. It is seen that for the PDF of all the cases, the departure from
that of the Gaussian excitation decreases as � increases. The re-
sults show that the response approaches to Gaussian process when
��25.

The approximate stationary mean-square values E�Qi
2�

=�−�
� �−�

� qi
2p�q ,p�dqdp are shown in Figs. 3�a� and 3�b� for dif-

ferent cases b=0, 0.1, and 1. For nonlinear cases b=0.1 and 1, the
stationary mean-square response increases as � increases.

For substantiation purpose, the results from Monte Carlo simu-
lations are also included in Fig. 3 as circles. It is seen that they
extremely agree well with the analytical results obtained by the
proposed perturbation approach in the region ��7.5.

5.2 Example 2. Another example selected for consideration is
governed by

Ẍ1 + 2	1X1
2Ẋ1 + k1X1 + aX2 + b�X1 − X2�3 = X1�1�t� �20a�

Ẍ2 + 2	2X2
2Ẋ2 + k2X2 + aX1 + b�X2 − X1�3 = X2�2�t� �20b�

which are the two stiffness coupled oscillators subject to paramet-
ric Poisson white noise excitations. The Hamiltonian formulations
of the system are �10�
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Fig. 1 Approximate stationary probability density of displacement q1 of system „16…. „a… b=0.1; „b… b=1.
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Q̇1 =
�H

�P1
, Ṗ1 = − � �H

�Q1
+ 2	1Q1

2 �H

�P1
	 + Q1�1�t� �21a�

Q̇2 =
�H

�P2
, Ṗ2 = − � �H

�Q2
+ 2	2Q2

2 �H

�P2
	 + Q2�2�t� �21b�

in which the Hamiltonian is the same as that in Eq. �18�. By
making the same assumptions as those in the foregoing example,
it shares the same stationary PDF with system �17a� and �17b�
when �1,2�t� are Gaussian white noises. The approximate PDF for
the stationary response can be deduced by the same perturbation
procedure.

The numerical results are obtained and the stationary PDFs of
displacements q1 and q2 for strongly nonlinear case �b=5� are
shown in Figs. 4�a� and 4�b�, respectively, along with the Monte
Carlo simulation results. The specified case in which �=3, corre-
sponding to sparse pulses, is compared to the case of Gaussian
white noise excitation. It is worthy to note that, even for this
highly non-Gaussian excitation process ��=3�, the non-
Gaussianity of the excitation has little influence on the response
non-Gaussianity. A comparison of Figs. 1, 2, and 4 shows that the
effect of excitation non-Gaussianity on the response non-
Gaussianity for parametric excitation system is much weaker than
that for external excitation system.

6 Discussion on the Criterion

It is reasonable for the present study to adopt �=�tr as the
criterion for the departure from a Gaussian excitation. The follow-
ing two aspects are taken into consideration.

First, we can see this from the viewpoint of the measure of the
denseness of the pulse trains. So � comes to be the ratio of the
relaxation time of the system to the interarrival interval of the
excitation, �= tr / �1 /��=�tr, which stands for the measure of the
“comparative” denseness of the pulse train with respect to the
specified system. The pulses tend toward comparative sparseness
with a decreasing �.

Second, we can also explain this in the aspect of a single im-
pulse. According to the following relationship, �=�tr=� /	
= �I0 /	� /E�Y2�, it is seen that �� �E�Y2��−1 for a fixed intensity I0.
The mean-square value E�Y2� denotes the average intensity of
each single impulse �distinguishes from the intensity of the impul-
sive noise�, the rising value of which may give rise to the effects
of geometric nonlinearity �e.g., large deflections� and/or nonlinear
material behavior and is likely to increase the probability of the
first-passage failure for the pulse excited system, in view of the
fact that the dissipating ability is not infinite for a restricted damp-
ing coefficient 	.
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Fig. 2 Approximate stationary probability density of displacement q2 of system „16…. „a… b=0.1; „b… b=1.
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7 Concluding Remarks
In the present paper, the stationary response of MDOF dissi-

pated Hamiltonian systems to Poisson white noises has been stud-
ied. A perturbation approach has been adopted to get an approxi-
mate stationary solution for the generalized FPK equation, thereby
the stationary PDF and the mean-square value for the system re-
sponse have been obtained. The effects of non-Gaussianity of the
excitation on the system response have been investigated by using
two specific examples. Both the analytical results and those from
Monte Carlo simulations show that the effect of excitation non-
Gaussianity is significant for the externally excited system, but
negligible for the parametrically excited system. A suitable crite-
rion for identifying departure from Gaussianity is the comparative
denseness of the pulse train with respect to the specified system,
which is defined as the product of the mean arrival rate of the
impulses and the relaxation time of the oscillator, i.e., �=�tr. The
non-Gaussianity of excitation intensifies as � decreases. For prac-
tical purposes, it is convenient to treat Poisson white noises as
Gaussian white noises if ��25.

It is possible to further extend the proposed procedures to pre-
dict the response of MDOF nonlinear systems to Poisson white
noises with nonsymmetrically distributed random amplitudes.
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A closed-form analytical solution to thermoelastic bending prob-
lems of multilayered beams is obtained by an alternative two-
variable method. There are only two unknowns to be solved and
two equilibrium conditions to be satisfied in the present analysis.
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1 Introduction
Film/substrate structures have been widely used in surface en-

gineering, semiconductor industry, etc. Residual stresses and
bending are inevitably generated by external moments or/and in-
ternal stresses such as due to differential thermal expansion or
lattice mismatch. For example, in 1865, Rosse �1� tried to make
flat bimetallic mirrors for a Newtonian telescope by coating glass
with silver and copper. Up until now, many efforts have been
devoted to the analysis of residual stresses in multilayered sys-
tems. There are two approaches to tackle the problem: One is
based on beam-bending theory �2–15�; the other is based on
physical superposition method �16–24�.

The “neutral axis” has been studied by Beeckman early in
1620, which is defined in bending theory as the line in the cross
section of a beam where the normal strain is zero. Until 1826,
Navier proved that the location of the neutral axis passes through
the centroid of the cross section for pure bending problems of
single-layered beams. When the beam is subjected to external mo-
ments only, the zero-stress axis coincides with the zero-strain axis
�5–7�, so the neutral axis can be obtained by finding the location
with zero normal stress after solving the stress distribution in the
system. However, when subjected to internal stresses, the conclu-
sion is not valid, because multiple zero-stress axes may exist for
multilayered beams, which depends on material properties and
geometrical sizes �18,19�. A simple relationship was formulated
by Stoney �2� in 1909 to predict residual stresses when the film is
ultrathin, which has been widely used in many applications. How-
ever, his assumption on a neutral axis for zero bending moment
does not exist in a bilayer system bent by internal stresses. A
general solution for the bending of bilayers due to thermal stresses
was derived by Timoshenko �3�. Furthermore, both layers were

assumed to have the same curvature and there were three un-
knowns for the bilayer cases. Moreover, the numbers of both the
unknowns and continuity conditions at interfaces increase with the
number of layers �8–11�. As a result, obtaining a closed-form
solution is a formidable task. Nevertheless, Freund �12,13� pre-
sented a two-variable model for multilayered structures, in which
there are only two unknowns: a reference strain and a reference
curvature for the same reference plane. Furthermore, Freund’s ref-
erence plane can be arbitrarily defined. The approach has been
adopted by others by assuming either the midplane of the system
�14� or the midplane of the graded layer �15� as the reference
plane.

For the existence of dual zero-stress axes for residual stress
problems of bilayers, the definition of the neutral axis for zero
normal stress cannot be used in the cases. Hsueh and Evans �16�
and Townsend et al. �17� found that if the neutral axis were de-
fined as the line in the cross section of the bilayer where the
bending strain component is zero, the definition could be readily
used to solve the bending problem. Subsequently, Hsueh et al.
extended their approach to multilayers �20–22� and graded layers
�23,24�. The approach was achieved by decomposing the total
strain into a uniform strain component and a bending strain com-
ponent. So, there are still only three unknowns to be solved. In
order to supply three equations, the original axial force equilib-
rium condition is divided into the following two conditions �22�:
The resultant axial force due to the uniform strain component is
zero; the resultant axial force due to the bending strain component
is zero. Another parallel physical approach to bending problems of
bilayers was developed by Chu �18� and Chuang and Lee �19� via
a thought experiment. Compared to Hsueh’s model, the virtual
force in the later approach should be solved by the continuous
condition at the interface. As Chuang and Lee �19� pointed out
that the source of error for Chu’s analysis comes from the deriva-
tion of virtual force that was solved by satisfying the force bal-
ance condition not the displacement continuous condition.

Recently, Zhang and Xing �25� provided an alternative model
for residual stresses of multilayered beams, in which the centroi-
dal principal axis was taken as the coordinate axis and the two
unknowns are the curvature radius of the zero-strain axis �i.e., the
neutral axis� and the normal strain at the centroidal principal axis.
That is to say, there are two reference planes in Zhang and Xing’s
model �25�, which is a little different from Freund’s model
�12–15�. As a complement, the present study examines the differ-
ences among zero-stress axis, zero-strain axis, bending axis, cen-
troidal axis, and the extent to which it is useful for bending prob-
lems if multilayers are subjected to both residual stresses and
external moments. It should be noted that the coordinate axis is
relocated at the interface between the substrate and the film,
which is the same as Hsueh’s model �20–22�, and the two un-
knowns are the curvature radius of the zero-strain axis and the
normal strain at the interface between the substrate and the film.
First, an alternative exact solution to stress distribution in
multilayer beams subjected to both residual stresses and external
moments is derived. Then, the solution is reduced to that of bilay-
ers and compared to existing solutions. Finally, a comparison
among the zero-strain stress, the zero-stress axis, the bending axis,
and the centroidal axis is made by considering a bilayered beam
subjected to external moments or residual stresses.

2 Two-Variable Model for Multilayered Beams
As shown in Fig. 1, an elastic multilayered beam with length l

and width b is subjected to the external moment M and the tem-
perature variation �T, where n layers of the film with individual
thickness, hi, �i=1,2 , . . . ,n�, are sequentially bonded to a sub-
strate with thickness hs. The interface between the substrate and
layer 1 of the film is taken as the coordinate axis x. The ther-
moelastic properties of the substrate and the film are Es, �s and Ei,
�i, where E is Young’s modulus and � is the thermal expansion
coefficient. Assume that the plane cross-section assumption and
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the uniaxial stress assumption are still valid. If � is the distance
from the zero-strain axis to the coordinate axis x, and � is the
curvature radius of the zero-strain axis, then the normal strain at
the location y is

� = ��� + � + y�d� − �d��/��d�� �1�

in which d� is the relative rotation angle of the two adjacent cross
sections. Similarly, the normal strain at the coordinate axis x is

�0 = ��� + ��d� − �d��/��d�� �2�
From Eqs. �1� and �2�, one can get

� = �0 + y/� �3�
The stress-strain relations for thermoelastic problems are given

as

�s = Es� − Es�s�T �4a�

�i = Ei� − Ei�i�T �4b�

where �s and �i are the normal stresses in the substrate and the
film, respectively. From Eqs. �3�, �4a�, and �4b�, one can get

�s = Esy/� + Es�0 − Es�s�T �5a�

�i = Eiy/� + Ei�0 − Ei�i�T �for i = 1 – n� �5b�
For zero axial force, the balance equations of the multilayered

beam are given as

�
As

�sdAs + �
i=1

n �
Ai

�idAi = 0 �6a�

�
As

�sydAs + �
i=1

n �
Ai

�iydAi = M �6b�

where As and Ai are, respectively, the cross-section areas of the
substrate and the film. Substituting Eqs. �5a� and �5b� into Eqs.
�6a� and �6b� yields

�0 = ��Es�sAs + �
i=1

n

Ei�iAi	�T − �M + MT�C1/C3
� C2

�7a�

1/� = �M + MT�/C3 �7b�
in which

C1 = EsSs + �
i=1

n

EiSi, C2 = EsAs + �
i=1

n

EiAi,

C3 = �EsIs + �
i=1

n

EiIi	 − C1
2/C2

MT = �Es�sSs + �
i=1

n

Ei�iSi	�T − �Es�sAs + �
i=1

n

Ei�iAi	�TC1/C2

in which Ss, Si and Is, Ii are the geometrical properties of the
substrate and the film, where S is the static moment and I is the
second axial moment of the cross section with regard to the coor-
dinate axis x.

3 Results for a Bilayered Beam
A special case of one layer of film on a substrate �i.e., n=1� is

considered to compare with existing solutions. Assume that the
film is much thinner than the substrate. When the bilayered beam
is subjected to residual stresses only �i.e., M =0�, the zero-order
approximate solution for stress distribution can be given as

�1 = − Eshs
2/�6�h1� �8a�

�s = Es�y + 2hs/3�/� �8b�

1/� = 6E1h1��1 − �s��T/�Eshs
2� �8c�

Equation �8a� is the same as the well-known Stoney equation �2�.
From Eq. �8b�, the zero-stress axis is located at 2 /3 of the sub-
strate thickness underneath the film/substrate interface, which has
also been obtained by Townsend et al. �17� and Hsueh �21,22�.
Conversely, under the external moments only �i.e., �T=0�, the
approximate stresses become

�1 = 6ME1/�Esbhs
2� = E1hs/�2�� �9a�

�s = 6�2y + hs�/�bhs
3� �9b�

1/� = 12M/�Esbhs
3� �9c�

From Eq. �9b�, the zero-stress axis is located at y=−hs /2. Hsueh
et al. �18,19,22� pointed out that there is an improper tendency to
locate the zero-stress axis at the centroid of the substrate in re-
sidual stress analysis of bilayers. In addition, the zero-stress axis
is often taken as the neutral axis in some cases.

Next, in Figs. 2 and 3, the location differences among zero-
strain axis, zero-stress axis, bending axis, and centroidal axis
are compared by Eqs. �3�, �5a�, �5b�, �7a�, and �7b� as well
as the following bending axis formula �22�: yb

= �−Eshs
2+E1h1

2� / �2�Eshs+E1h1��. It should be pointed out that
the centroidal axis in this paper is geometrically defined by yc
= �h1-hs� /2. As shown in Fig. 2, when the bilayered beam
�h1 /hs=0.2� is subjected to external moments only, the zero-strain
axis coincides with the zero-stress axis and the bending axis, but
does not pass through the centroidal axis for the cross section of
the beam. However, the bending axis passes through the centroid
of the equivalent cross section of the beam �22�. In addition, the

Fig. 1 Longitudinal section of a multilayered beam and the
coordinate system

Fig. 2 Comparison among different axes of a bilayered beam
subjected to external moments only
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location of the zero-strain axis, the zero-stress axis, and the bend-
ing axis ascends from the substrate to the film with the increase in
the modulus ratio E1 /Es.

As shown in Fig. 3, when the bilayered beam �h1 /hs=0.2,
�1 /�s=59 /25� is subjected to residual stresses only, the locations
of the zero-stress axis, the bending axis, and the centroidal axis
apparently diverge. The zero-strain axis disappears in the beam in
that case. The number of the bending axis is unique, and its loca-
tion rises up from the substrate to the film with the increase in the
modulus ratio E1 /Es. However, the number and the location of
zero-stress axes vary with the modulus ratio E1 /Es. The zero-
stress axis in the substrate always exists and its location descends
with the increase in the modulus ratio E1 /Es. However, the zero-
stress axis in the film emerges only when E1 /Es�6.35; further-
more, its location also descends with the increase in the modulus
ratio E1 /Es, and finally approaches a value of 0.11. Obviously, in
order to avoid interface stress problem, the zero-stress axis of the
substrate should be closer to that of the film, but it does not mean
that the interface strain takes the least value. It should be pointed
out that the locations of the zero-strain axis and the zero-stress
axis are not related to the magnitude of external moments or tem-
perature variation when the bilayer beam is subjected to external
moments or residual stresses.

4 Conclusions
In classical beam-bending theory, the neutral axis �i.e., zero-

strain axis� is often taken as the coordinate axis. So, it is necessary
to find its location after the stress distribution in the beam is
solved. However, the zero-strain axis does not coincide with the
zero-stress axis any longer, and the number of the zero-stress axis
varies with the parameters �Fig. 3� when the multilayered beam is
subjected to residual stresses. Compared to Timoshenko’s model
and Hsueh’s model, there are only two unknowns in the present
model Eqs. �7a� and �7b�, and the step for locating the neutral axis
or the bending axis is abandoned. Compared to Freund’s model,
there are two reference planes in the present model, and the geo-
metrical relation �3� is precisely obtained in the sense of the plane
cross-section assumption and the uniaxial stress assumption.
However, if the radius of the curvature can be regarded as the
same throughout the thickness, the present model is the same to
Freund’s model numerically.
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In this paper, Taylor’s floating air-backed plate (ABP) model is
extended to the case of a submerged water-backed plate (WBP)
within the acoustic range. The solution of the WBP is cast into the
same format as that of the ABP with a modified fluid-structure
interaction (FSI) parameter, which allows a unified analysis of the
ABP and WBP using the same set of formulas. The influence of
back conditions on fluid and structural dynamics, including fluid
cavitation, is systematically investigated. Asymptotic limits are
mathematically identified and physically interpolated. Results
show that the WBP experiences lower equivalent pressure load-
ing, reduced structural response, and hence lower peak momen-
tum gaining. The time to reach peak momentum is shorter for the
WBP than for the ABP. Cavitation is found to be almost inevitable
for the ABP, while relevant to the WBP only for a small range of
the FSI parameter. Implications to shock response of submerged
structures are briefly discussed. �DOI: 10.1115/1.2871129�

1 Introduction
In his pioneering work, Taylor �1� studied the fluid-structure

interactions �FSIs� between an exponentially decaying plane
shock wave and an infinite rigid flat plate. Closed-form solution
for the wetted surface pressure and plate response histories were
obtained for air-backed plates with elastic constraints. It was
shown that the influence of elastic constraints is small for practical
configurations. By neglecting the elastic constraint, elegant for-
mulations were derived for a freestanding air-backed plate �ABP�.
It was shown that the peak momentum transmitted to a freestand-
ing plate decreases significantly with increasing FSI effects.

Taylor’s model of a floating ABP remains the foundation for the
understanding of FSI between underwater shock and floating
structures. It was adopted in the three-stage model proposed in
Ref. �2� to estimate the momentum input via decoupling the FSI
stage from the core compression and structural bending stages of
sandwich constructions. The special properties of shock-structure
interaction have been extensively demonstrated and utilized, theo-
retically and experimentally, in the enhanced design of air-backed
sandwich structures against underwater shock loading �3–12�.

An enhancement of Taylor’s treatment was presented in Ref.
�13� to account for the yield strength of the core to improve the
estimation of momentum transmission to sandwich constructions.
The extension of Taylor’s model for air blast loading was accom-
plished in Refs. �14–16�, where nonlinear compressibility effects

are important �17�. The extended model for air blast loading was
utilized in Ref. �18� to study the transient response of metal sand-
wich plates subject to intense air shocks. In Ref. �19�, the dynamic
response of two plates separated by a column of water subject to
an incident pressure pulse was investigated for a specific choice of
parameter values with the purpose of simulating the sail append-
age of a submarine. In addition to Taylor-type models, there is
another important class of analytical work that investigated the
dynamic response of elastic shell structures subject to underwater
shock loading �20–26�.

The objective of the current work is to extend Taylor’s floating
ABP model for the analysis of submerged water-backed plate
�WBP� to characterize the transient FSI response and to identify
asymptotic limits. The motivation is to gain insights for the design
of submerged structures �e.g., marine propellers, rudders, off-
shore piles, etc.� against underwater blast loads.

2 Formulation

2.1 Governing Equations. Similar to the assumptions used in
Refs. �1,2�, a rigid �neglect the elastic deformation and wave
propagation� but freestanding plate of mass per unit area m
=�shs is considered, where �s and hs are, respectively, the density
and thickness of the solid plate. The plate model adopted in Refs.
�1,2� has only one wetted surface with water on the left side �L
and air on the right side �R. In the current work, the plate is fully
submerged in water so that it has two wetted surfaces �L and �R,
as shown in Fig. 1. Consider an incident plane pressure wave from
the left hand side,

pi�x,t� = p0e−�t−x/c�/� �1�

where c is the sound speed in the water, p0 is the peak pressure,
and � is the pressure decay time. The origin of the coordinate is
taken to be on the plate, with the positive direction to be the same
as the traveling direction of the incident wave. The plate is as-
sumed to be able to freely translate in the x direction. Hence, the
problem is essentially one dimensional �1D�. Upon arrival of the
incident wave on the left side of the structural surface �L, it is
only partially reflected back due to the translation of the plate in
the x direction. The wetted pressure on �L is the sum of the
contribution from the incident wave pL

i �t�= p0e−t/� and from the
reflected wave pL

r �t�= p0��t�,

pL�t� = p0�e−t/� + ��t�� �2�

where ��t� is a functional to be determined. Let u�t�, u̇�t�, and ü�t�
be the displacement, velocity, and acceleration of the plate, re-
spectively. Mass and momentum balance near the left surface �L
requires

u̇�t� =
p0

�c
�e−t/� − ��t�� �3�

where p0e−t/� /�c and −p0��t� /�c are the particle velocities due to
the incident and reflected waves, respectively. Notice that the non-
linear compressibility effects have been neglected. Combining
Eqs. �2� and �3�, a relation between the wetted pressure on �L and
the plate velocity can be obtained as

pL�t� = 2p0e−t/� − �cu̇�t� �4�
For a fixed rigid surface, the incident wave will be fully re-

flected and the resultant pressure will be doubled at the surface.
However, axial translation of the plate leads to a partial reflection
of the incident wave, and the pressure reduction as compared to a
fixed surface is �cu̇�t�, as shown in Eq. �4�. Similarly, mass and
moment balance near the right side of the structural surface �R
requires
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u̇�t� =
pR�t�
�c

�5�

where pR�t� is the wetted pressure on �R. The plate is subjected to
pL�t� on �L and pR�t� on �R simultaneously. Hence, the equation
of motion for the plate can be expressed as

mü�t� = pL�t� − pR�t� �6�
Combining Eqs. �4�–�6�, we obtain the governing ordinary dif-

ferential equation �ODE� for the plate motion as

mü�t� + 2�cu̇�t� − 2p0e−t/� = 0 �7�

2.2 Transient Response. Applying initial conditions u�0�
= u̇�0�=0 to solve for the plate displacement from Eq. �7�,

u�t� =
2p0�2

m�� − 1��
��� − 1� + e−�t/� − �e−t/�� �8�

where � is the FSI parameter for the WBP,

� �
2�c�

m
�9�

Notice that the FSI parameter for the ABP is ���c� /
m�=� /2�, as defined in Refs. �1,2�. Based on the definition,
� ,�� �0,��, where they both approach zero for an extremely
heavy plate �m→�� or an extremely short shock event ��→0�,
and infinity for an extremely light plate �m→0� or an extremely
long shock event ��→��. The FSI parameter can be interpolated
as the relative duration of the incident shock wave � and the
duration of the FSI interaction process �: � ,��� /�. For the
ABP, �a=m /�c as defined in Ref. �14�; for the WBP, �w

=m /2�c. Note that �w=�a /2 since the WBP interacts with water
on both sides while the ABP interacts with water only on one side.

The plate velocity and acceleration can be obtained from Eq.
�8� as

u̇�t� =
2p0�

m�� − 1�
�e−t/� − e−�t/�� �10�

ü�t� =
2p0

m�� − 1�
��e−�t/� − e−t/�� �11�

The wetted pressures on �L and on �R can be obtained by com-
bining Eqs. �4�, �5�, and �10�,

pL�t� = 2p0e−t/� −
p0�

� − 1
�e−t/� − e−�t/�� �12�

pR�t� =
p0�

� − 1
�e−t/� − e−�t/�� �13�

The net pressure acting on the plate is the difference between
pL�t� and pR�t�,

pT�t� = pL�t� − pR�t� = 2p0e−t/� −
2p0�

� − 1
�e−t/� − e−�t/�� �14�

When pL�t� decreases to zero, cavitation will set in on �L �as-
suming the fluid cavitation pressure to be zero�. The cavitation
inception time 	c can be estimated by solving for pL�t�=0. Notice
that there is no real solution to this equation if �
2. This means
that cavitation is only relevant when ��2, where the real solution
takes the form

	c = �� ln �

� − 1
−

ln�2 − ��
� − 1

� �� � 2� �15�

When pT�t� decreases to zero at time 	p, the plate will reach its
peak response with momentum Ip,

	p = �
ln �

� − 1
�16�

Ip = mu̇�	p� = �I �17�

where I=	o
�2 exp�−t /��dt=2p0� is the maximum achievable mo-

mentum �in the limit of a fixed rigid plate� and � is the momentum
transmission coefficient for the WBP,

� � ��/�1−�� �18�
Equation �18� provides a quantitative measure of the percentage

of momentum transfer from the fluid to the structure during the
FSI process. Based on the definition, the momentum transmission
coefficient � is dependent on a sole FSI parameter ��2�c� /m
and is bounded by zero and unity. For an extremely light plate or
an extremely long shock event, �→0; for an extremely heavy
plate or an extremely short shock event, �→1.

The dynamics of the ABP subject to the same planar shock has
been derived in Refs. �1,2�. The results are summarized below for
comparison with the WBP solution �Eqs. �8�, �10�, �11�, �14�–�16�,
and �18��. For the presentation hereafter, superscripts a and w will
be used to represent the air-backed and water-backed conditions,
respectively,

ua�t� =
2p0�2

m�� − 1��
��� − 1� + e−�t/� − �e−t/�� �19�

u̇a�t� =
2p0�

m�� − 1�
�e−t/� − e−�t/�� �20�

üa�t� =
2p0

m�� − 1�
��e−�t/� − e−t/�� �21�

pT
a�t� = pL

a�t� = 2p0e−t/� −
2p0�

� − 1
�e−t/� − e−�t/�� �22�

	c
a = 	p

a = �
ln �

� − 1
�23�

�a = ��/�1−�� �24�

where ���c� /m is the FSI parameter for the ABP. In these ex-
pressions, the pressure on the dry surface of the ABP, pL

a, has been
taken to be zero for simplicity.

The solution to the WBP has the same form as that for the ABP
except for the FSI parameter and the cavitation inception time.
The FSI parameter ��2�c� /m for the WBP is two times that of
���c� /m for the ABP. The cavitation inception time 	c

a and the

water−backed

p
0
exp(−t/θ)

p
0
exp(−t/θ)

ΩL

ΩL ΩR

ΩR

x0

m

x0

m

water water

airwater

air−backed

Fig. 1 Schematic drawing for the ABP and WBP subject to an
exponentially decaying shock wave from the left hand side
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peak response time 	p
a are equal for the ABP because it has only

one wetted surface and pT
a = pL

a − pR
a = pL

a since pR
a =0. However, 	c

w

is different from 	p
w for the WBP because it has two wetted sur-

faces and pT
w= pL

w− pR
w� pL

w since pR
w
0. In addition, Eqs. �23� and

�15� indicate that cavitation inception is consistently relevant to
the ABP for all �
0, while it is only relevant to the WBP for
��2.

3 Results

3.1 Fluid Pressure and Structural Response: A Case
Study. In order to investigate the influence of different back con-
ditions on the transient response characteristics, a freestanding
steel plate with either air-backed or water-backed conditions is
chosen as a case study. The water density, sound speed, and steel
density are �=1000 kg /m3, c=1400 m /s, and �s=8000 kg /m3,
respectively. The incident shock wave has peak pressure p0
=10 MPa and decay time �=0.1 ms. A typical plate thickness is
taken to be hs=0.01 m, which leads to the FSI parameter �
��c� /m=�c� /�shs=1.75 for the ABP and ��2�c� /m=3.5 for
the WBP. Notice that for this specific configuration, cavitation is
only relevant for the ABP, but not for the WBP, as analyzed in
Sec. 2.2 since �
2.

3.1.1 Fluid Pressure. The time histories of pL
a, pL

w, pR
w, and pT

w

are plotted in Fig. 2, where pL
a is the wetted pressure on �L of the

ABP; pL
w, pR

w, and pT
w are the wetted pressure on �L, wetted pres-

sure on �R, and net pressure, respectively, of the WBP. Notice
that the atmosphere pressure on the dry surface �R of the ABP has
been neglected; hence, pT

a = pL
a. In the history plots, the time period

is chosen to be equal to 0.075 ms, during which the plates have
achieved their peak momentum. Observations can be summarized
as follows.

• pL
w is higher than pL

a during the time period of interest be-
cause a water-backed condition provides more resistance to
the plate motion. Hence, the WBP is less yielding and is
subjected to higher pressure loading on �L.

• pT
w��pL

w− pR
w� is lower than pT

a = pL
a during the time period of

interest due to the fact that pR
w acts in the opposite direction

and hence partially cancels the effect of pL
w.

• pT
a and pT

w become negative after t
	p
a and t
	p

w, respec-
tively. Once the net pressure loading becomes negative, the
plate starts to decelerate. Hence, 	p

a and 	p
w are the time

corresponding to peak momentum, respectively, for the ABP
and WBP.

3.1.2 Structural Response. The plate velocity �va= u̇a and vw

= u̇w� and displacement �ua and uw� time histories are plotted in
Fig. 3. The following observations can be summarized.

• The WBP experiences lower velocity and less displacement
than the ABP due to the lower net pressure loading.

• The plate velocity reaches its peak value when the net pres-
sure becomes negative, at time 	p

a and 	p
w, respectively, for

the ABP and WBP. Since 	p
w�	p

a, the WBP reaches its peak
velocity earlier than the ABP.

• The displacement for both plates has not yet reached its
peak value since the plate velocity is still positive during the
time period of interest.

3.2 Momentum Transmission and Cavitation Inception: A
Parametric Study. In order to investigate the influence of the FSI
parameter �� for the ABP and � for the WBP�, a parametric study
is presented in this section for the momentum transmission and
cavitation inception. General trends are observed. Asymptotic lim-
its are mathematically identified and physically interpolated.

3.2.1 Momentum Transmission. The momentum transmission
coefficient, �, as a function of the FSI parameter ���c� /
m�=� /2� is plotted in Fig. 4 for both the ABP ��a=��/1−�� and
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WBP ��w=��/1−��. The following general trends are observed.

• � asymptotically decreases with increasing � values for both
the ABP and WBP. This is due to the fact that an increase in
FSI effects leads to more pressure reduction and, hence, less
momentum transmission. It can be formally proven that
lim�→0 �=1, which corresponds to the maximum achievable
momentum transfer for an extremely heavy plate or an ex-
tremely short shock event, and lim�→� �=0, which corre-
sponds to the vanishing momentum transfer for an ex-
tremely light plate or an extremely long shock event.

• � is consistently lower for the WBP than for the ABP, except
at vanishing �, due to the lower net pressure loading on the
WBP than on the ABP. The influence of back conditions
vanishes for an extremely heavy plate or an extremely short
shock event, i.e., lim�→0 �w /�a=1. On the other extremity, it
can be shown that lim�→� �w /�a=0.5, which indicates that
the rate of �w→0 is two times faster than �a→0 in the limit
of �→� �extremely light plate or extremely long shock
event�.

As mentioned in Sec. 3.1.2, the time to reach the peak velocity
or, equivalently, the peak momentum, 	p, is shorter for the WBP
than for the ABP. To further investigate this point, the dimension-
less time 	p /� is plotted against � in Fig. 5 for both the ABP and
WBP. The following general trends are observed.

• 	p /� asymptotically decreases with increasing � for both the
ABP and WBP. It can be formally proven that
lim�→0 	p /�→� and lim�→� 	p /�=0.

• 	p /� is consistently smaller for the WBP than for the ABP
except at vanishing �. The influence of back conditions on
the peak response time vanishes for an extremely heavy
plate or an extremely short shock event, i.e., lim�→0 	p

w /	p
a

=1. On the other extremity, lim�→� 	p
w /	p

a =0.5, which indi-
cates that the rate of 	p

w /�→0 is two times faster than
	p

a /�→0 in the limit of �→� �extremely light plate or ex-
tremely long shock event�.

3.2.2 Cavitation Inception. When a plane shock impacts a
plate on the left side �L, cavitation may occur due to wave reflec-
tion and rarefaction. The current mathematical model is able to
identify the cavitation inception time 	c, as shown in Sec. 2.2. It
has been shown that cavitation is relevant to the WBP only for
0���2, but to the ABP for all �
0. The dimensionless cavita-
tion inception time 	c /� is plotted against the FSI parameter �

� �0.1,0.9� for both the ABP and WBP in Fig. 6. A region of
�0.1,0.9� is chosen since 	c

a and 	c
w quickly approach � for �

�0.1, and there is no real solution for 	c
w if �
1 ��
2�. The

following observations can be summarized.

• For the ABP, 	c
a /� monotonically decreases with increasing

�. This implies that the fluid is more susceptible to cavita-
tion for a larger value of �. It can be formally proven that
lim�→0 	c

a /�→� and lim�→� 	c
a /�=0. Notice that 	c

a=	p
a for

the ABP, as shown in Eq. �23�, which implies that cavitation
immediately sets in when the plate has achieved its peak
momentum.

• For the WBP, the relation between 	c /� and � is not mono-
tonic. In fact, �	c

w /��min=2 when �=0.5 ��=1�. Notice that
	c

w�	p
w for the WBP, as shown in Eqs. �15� and �16�. In fact,

	c
w
	p

w, which implies that cavitation sets in after the plate
has achieved its peak momentum if cavitation is indeed rel-
evant.

• Cavitation inception time is larger, or, equivalently, cavita-
tion sets in later for the WBP than for the ABP because the
resistance provided by the water-backed condition tends to
weaken the rarefaction wave for the WBP.

4 Conclusion
In this paper, Taylor’s freestanding plate model is reformulated

for the case of a submerged WBP within the acoustic range. The
solution of the WBP is cast into the same format as that of the
ABP using a doubled FSI parameter. The influence of the water-
backed condition to fluid and structural dynamics is systematically
investigated in terms of peak momentum transmission, peak re-
sponse time, and cavitation inception time. Asymptotic limits are
mathematically identified and physically interpolated. Results
show that the WBP experiences lower net pressure loading, re-
duced structural response, and, hence, lower peak momentum
gaining, when compared to an equivalent ABP. In addition, the
peak response time is shorter for the WBP than for the ABP.
Cavitation is found to be almost inevitable for the ABP, while only
relevant to the WBP over a small range of FSI parameters. The
cavitation inception time, if relevant, is longer for the WBP than
for the ABP.

It should be mentioned that the current analytical model as-
sumes a rigid body motion and a 1D system behavior. The effect
of nonlinear fluid compressibility has also been neglected. Addi-
tional studies are needed to improve the understanding of interac-
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Fig. 5 Comparison of the dimensionless peak response time
�p /� as a function of the FSI parameter �c� /m between the ABP
and WBP.
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Fig. 6 Comparison of dimensionless cavitation inception time
�c /� as a function of the FSI parameter �c� /m between the ABP
and WBP
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tions between multidimensional deformable structures and under-
water blast loadings with complex fluid cavitation.
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The author is to be commended for his attempt to cope analyti-
cally with the complex problem of friction. A few comments re-
garding the present paper are in place. The present simplified fric-
tion model is essentially based on the 1949 Mindlin approach �see
Ref. �1��. According to this concept, it is assumed that the contact
area of an elastic spherical asperity is given by the frictionless
Hertz solution �see Eq. �2�� and that slip of such an asperity will
ensue when the average shear stress at its contact area reaches a
critical value �see Eq. �6��. These simplifying assumptions may
lead to some unrealistic situations where the local equivalent von
Mises stress in the contact interface can exceed the yield strength
of the sphere material. Additional shortcomings of the Mindlin
concept is that an increase of the contact area due to the tangential
load is completely excluded, and that sliding inception always
occurs in the contact interface of each asperity regardless of its
level of normal loading. This would contradict the well known
phenomena of junction growth and material transfer, where the
latter requires slip below the contact interface. In this regard, it is

worthwhile mentioning a different approach to sliding inception
of a single spherical asperity �2� and to modeling of static friction
of contacting rough surfaces �3�. These papers are not limited to
elastically deformed asperities, and in Ref. �3� adhesion effect was
also considered. However, these two models still assume, like in
the present paper, that the contact area resulting from a frictionless
normal loading is unaffected by the additional tangential load. A
more realistic model was recently presented in two papers by
Brizmer et al. assuming full stick contact condition for both nor-
mal and tangential loadings �see Refs. �4,5��. The full stick contact
condition captures very well the concept of an adhesive joint
formed in the contact interface. It does not require simplifying
assumptions regarding the size of the contact area and the location
of slip at the contact interface; therefore, it never violates the von
Mises yield criterion. Furthermore, it utilizes first principles to
predict the sliding inception at the instant of vanishing tangential
stiffness �as shown in Fig. 1 of the present paper� and to obtain the
resulting corresponding static friction and junction growth. Since
the full stick contact condition does not impose slip at the contact
interface, it allows for the possibility of material transfer under
severe normal loads. Additionally, the results of Refs. �4,5� corre-
late well with some preliminary experimental results obtained by
Ovcharenko et al. �6�.
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Reese Jones
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I appreciate the comments made about the paper and the addi-
tional references. It is true that Eq. �4�, taken from Johnson’s
book, is Mindlin’s solution from his 1949 paper, and due credit
should have been given. Moreover, as Johnson pointed out, a full
stick solution for a Hertzian contact problem will have singulari-

ties. However, as stated in the paper: “This work is an attempt to
obtain the representative qualitative features and scaling of the
PSTD phenomenon without modeling the details of the single
asperity solution, i.e., the traction fields on the asperity-asperity
interface.” The assumption that, on average, the behavior follows
the Mindlin-based solution is admittedly crude, but tractable ana-
lytically. This simple relationship minimized the complexity of the
resulting expressions as compared to ones based on empirical re-
lationships, e.g., Tabor’s work, and allowed for a clearer analysis
of the basic mechanisms and population dynamics. More specifi-
cally, the need for substantial assumptions about the details of the
asperity-asperity constitutive interaction are in counterpoint with
the assumptions of smooth asperity surface geometry with well-
defined radii of curvature. I assume that most researchers would
agree that there are no precisely hemispherical asperities identifi-
able outside of the realm of theory and some artificial geometries
created in the laboratory. So, given the lack of characterization of
the details of asperity behavior, I think it is best to view asperities
as merely actors in an ensemble, with the ensemble determining
the observable behavior. Extension of the work to more detailed
interactions, including those cited in the Discussion, is straightfor-
ward and is left for future work.
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This paper joins a host of others, beginning with the seminal
papers of Reissner �1,2�, that attempt to improve the accuracy of
classical �Kirchhoff� plate theory without a concomitant refine-
ment of the classical boundary conditions—a refinement that ne-
cessitates using the equations of three-dimensional elasticity to
examine edge layers whose thicknesses are of the order of the

plate thickness. Without such a refinement, improvements to
Kirchhoff’s theory are, in general, illusory, as many authors over
the past 50 years have emphasized, especially Goldenveiser. See,
for example, Refs. �3–9�, where many other relevant references
will be found.

Often, authors of “improved” plate theories compare solutions
of their equations under simple support either to other theories or
to exact three-dimensional elasticity solutions. However, because
such solutions are mathematically equivalent to those of an infi-
nite plate under periodic surface loads, no edge layers arise so that
such comparisons are virtually useless.
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The authors are grateful to Professor Simmonds for giving his
observations on the paper under discussion. They would like to
present their comments on his observations.

1. The authors’ comments on the first paragraph �which starts
with “This paper joins a host of others,…”� of observations
by Professor Simmonds:

�a� The observations in the just mentioned paragraph are
not specifically directed toward the paper under dis-
cussion, but are directed, in general, toward host of
papers �beginning with the seminal papers of Reiss-
ner� wherein boundary edge effects are not specifi-
cally taken into account.

�b� The observations imply that as Reissner does not ad-

dress the boundary edge effects, refinement brought in
by his work is illusory. However, at the same time, the
papers of Reissner are referred to as “seminal papers.”
The authors detect contradiction in the observations.

�c� The authors do feel that the works of Reissner and
host of others �including the work of Mindlin� have
positively contributed to the research in the area of
theory of plates. All these theories, in general, have
their own importance and are useful in practice.

2. The authors’ comments on the second paragraph �which
starts with “Often, authors of “improved” plate theories
compare solutions…”� of observations by Professor Sim-
monds:

�a� The observations in the just mentioned paragraph are
also not specifically directed toward the paper under
discussion, but are directed, in general, toward “all
authors of ‘improved’ plate theories who compare so-
lutions of their equations under simple support either
to other theories or to exact three-dimensional elastic-
ity solutions.”

�b� The observations, in the mentioned paragraph, do not
deny that exact three-dimensional elasticity solution
for a simply supported plate does exist.
It is well known that, in the domain of linear theory of
elasticity, there cannot be a more accurate solution for
a given problem than the solution given by exact
three-dimensional elasticity.
It is just a sheer coincidence, and it is also just inci-
dental, that the exact three-dimensional elasticity so-
lution for a simply supported plate also happens to be
the solution for an infinite plate under periodic surface
loads. As a result, authors of various theories cannot
be faulted for comparing their results with the exact
results, wherever available, for validating their
theories.

The authors would like to stress that they have named their
theories as “New First-Order Shear Deformation Plate Theories,”
and as such they would like the theories presented to be viewed
only as simple alternatives to Reissner’s theory and to Mindlin’s
theory. The advantages of the new theories presented have been
clearly brought out in the paper under discussion.
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Erratum: “Reynolds-Stress Modeling of Three-Dimensional Secondary
Flows With Emphasis on Turbulent Diffusion Closure”

†Journal of Applied Mechanics, 2007, 74„6…,
pp. 1142–1156‡

I. Vallet

Equation �31� in the published paper contains a coefficient value error. The corrected equation is written below:

1

�̄
p�ui�

�2� = − CSP�− �2Cr1 + 10Cr2�
k3

�2�S̄ik

�k

�xk
+ S̄pk

�ui�up�

�xk
��

Cr1 = 0.0001; Cr2 = 0.0001; CSP = 0.085 �1 + min�0.5,Amax�0.25,2�1−6A���� �31�
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